Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561692
Title Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts
Author(s) Schubert, Miriam; Schubert, Lennart; Thomé, Andreas; Kiewidt, Lars; Rosebrock, Christopher; Thöming, Jorg; Roessner, Frank; Bäumer, Marcus
Source Journal of Colloid and Interface Science 477 (2016). - ISSN 0021-9797 - p. 64 - 73.
DOI https://doi.org/10.1016/j.jcis.2016.05.006
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) CO methanation - Coatings - Cobalt catalyst - Fischer-Tropsch - Xerogel
Abstract

The application of catalytically coated metallic foams in catalytic processes has a high potential for exothermic catalytic reactions such as CO2 methanation or Fischer-Tropsch synthesis due to good heat conductivity, improved turbulent flow properties and high catalyst efficiencies. But the preparation of homogenous catalyst coats without pore blocking is challenging with conventional wash coating techniques. Here, we report on a stable and additive free colloidal CoAlOOH suspension (sol) for the preparation of catalytically active Co/Al2O3 xerogel catalysts and coatings. Powders with 18 wt% Co3O4 prepared from this additive free synthesis route show a catalytic activity in Fischer-Tropsch synthesis and CO2 methanation which is similar to a catalyst prepared by incipient wetness impregnation (IWI) after activating the material under flowing hydrogen at 430 °C. Yet, the xerogel catalyst exhibits a much higher thermal stability as compared to the IWI catalyst, as demonstrated in catalytic tests after different heat agings between 430 °C and 580 °C. It was also found that the addition of polyethylene glycol (PEG) to the sol influences the catalytic properties of the formed xerogels negatively. Only non-reducible cobalt spinels were formed from a CoAlOOH sol with 20 wt% PEG. Metallic foams with pores sizes between 450 and 1200 μm were coated with the additive free CoAlOOH sol, which resulted in homogenous xerogel layers. First catalytic tests of the coated metal foams (1200 μm) showed good performance in CO2 methanation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.