Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561755
Title Motion coherence detection as a function of luminance level in human central vision
Author(s) Lankheet, M.J.M.; Doorn, A.J. Van; Bouman, M.A.; De Grind, W.A. Van
Source Vision Research 40 (2000)26. - ISSN 0042-6989 - p. 3599 - 3611.
Publication type Refereed Article in a scientific journal
Publication year 2000
Keyword(s) Coherence thresholds - Dark adaptation - Motion

We studied the changes and invariances of foveal motion detection upon dark adaptation. It is well-documented that dark adaptation affects both spatial and temporal aspects of visual processing. The question we were interested in is how this alters motion coherence detection for moving random texture. To compare motion sensitivity at different adaptation levels, we adjusted the viewing distance for equal detectability of a stationary pattern. At these viewing distances we then measured velocity tuning curves for moving random pixel arrays (RPAs). Mean luminance levels ranged from 50 down to 0.005 cd m-2. Our main conclusion is that foveal velocity tuning is amazingly close to luminance-invariant, down to a level of 0.05 cd m-2. Because different viewing distances, and hence, retinal image sizes were used, we performed two control experiments to assess variations of these two parameters separately. We examined the effects of retinal inhomogeneities using discs of different size and annuli filled with RPAs. Our conclusion is that the central visual field, including the near periphery is still rather homogeneous for motion detection at 0.05 cd m-2, but the fovea becomes unresponsive at the lowest luminance level. Variations in viewing distance had marked effects on velocity tuning, both at the light adapted level and the 0.05 cd m-2 level. The size and type of these changes indicated the effectiveness of distance scaling, and show that deviations from perfect invariance of motion coherence detection were not due to inaccurate distance scaling. (C) 2000 Elsevier Science Ltd.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.