Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561769
Title On the complex dynamics of intracellular ganglion cell light responses in the cat retina
Author(s) Przybyszewski, A.W.; Lankheet, M.J.M.; De Grind, W.A. Van
Source Biological Cybernetics 74 (1996)4. - ISSN 0340-1200 - p. 299 - 308.
Publication type Refereed Article in a scientific journal
Publication year 1996

We recorded intracellular responses from cat retinal ganglion cells to sinusoidal flickering lights, and compared the response dynamics with a theoretical model based on coupled nonlinear oscillators. Flicker responses for several different spot sizes were separated in a "smooth" generator (G) potential and corresponding spike trains. We have previously shown that the G-potential reveals complex, stimulus-dependent, oscillatory behavior in response to sinusoidally flickering lights. Such behavior could be simulated by a modified van der Pol oscillator. In this paper, we extend the model to account for spike generation as well, by including extended Hodgkin-Huxley equations describing local membrane properties. We quantified spike responses by several parameters describing the mean and standard deviation of spike burst duration, timing (phase shift) of bursts, and the number of spikes in a burst. The dependence of these response parameters on stimulus frequency and spot size could be reproduced in great detail by coupling the van der Pol oscillator and Hodgkin-Huxley equations. The model mimics many experimentally observed response patterns, including non-phase-locked irregular oscillations. Our findings suggest that the information in the ganglion cell spike train reflects both intraretinal processing, simulated by the van der Pol oscillator, and local membrane properties described by Hodgkin-Huxley equations. The interplay between these complex processes can be simulated by changing the coupling coefficients between the two oscillators. Our simulations therefore show that irregularities in spike trains, which normally are considered to be noise, may be interpreted as complex oscillations that might carry information.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.