Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561820
Title Modelling mechanically stable muscle architectures.
Author(s) Leeuwen, J.L. Van; Spoor, C.W.
Source Philosophical Transactions of the Royal Society B. Biological sciences 336 (1992)1277. - ISSN 0962-8436 - p. 275 - 292.
Publication type Refereed Article in a scientific journal
Publication year 1992

This paper presents a planar architectural model for an activated skeletal muscle, with mechanical equilibrium throughout the muscle belly. The model can predict the shape of the muscle fibres and tendinous sheets as well as the internal pressure distribution in the central longitudinal plane (perpendicular to the tendinous sheets) of uni- and bipennate muscle bellies. Mechanically stable solutions for muscle architectures were calculated by equating the pressure developed by curved muscle fibres with the pressure under a curved tendinous sheet. The pressure distribution under a tendinous sheet is determined by its tension, its curvature and the tensile stress of the attached muscle fibres. Dissections showed a good resemblance of the architecture of embalmed muscles with those from our simulations. Calculated maximum pressures are in the same order of magnitude as pressure measurements from the literature. Our model predicts that intramuscular blood flow can be blocked during sustained contraction, as several experimental studies have indeed demonstrated. The volume fractions of muscle fibres and interfibre space in the muscle belly were also calculated. The planar models predict a too low volume fraction for the muscle fibres (about 45% for the bipennate models with a straight central aponeurosis, and about 60% for the simulated unipennate muscle). It is discussed how, in a real muscle, this volume problem can be solved by a special three-dimensional arrangement of muscle fibres in combination with varying widths of the tendinous sheets.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.