Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561938
Title Feed types driven differentiation of microbial community and functionality in marine integrated multitrophic aquaculture system
Author(s) Deng, Yale; Zhou, Fan; Ruan, Yunjie; Ma, Bin; Ding, Xueyan; Yue, Xiaomei; Ma, Wenjun; Yin, Xuwang
Source Water 12 (2020)1. - ISSN 2073-4441
Department(s) Aquaculture and Fisheries
Business Economics
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Formulated diet - Functionality - Integrated multitrophic aquaculture - Microbial community - Sustainability

Integrated multi trophic aquaculture (IMTA) improves the production of aquatic animals by promoting nutrient utilization through different tropical levels. Microorganisms play an important role in elements cycling, energy flow and farmed-species health. The aim of this study was to evaluate how feed types, fresh frozen fish diet (FFD) or formulated diet (FD), influence the microbial community diversity and functionality in both water and sediment in a marine IMTA system. Preferable water quality, higher animal yields and higher cost efficiency were achieved in the FD pond. Feed types changed the pond bacterial community distribution, especially in the rearing water. The FFD pond was dominated with Cyanobacteria in the water, which played an important role in nitrogen fixation through photosynthesis due to the high nitrogen input of the frozen fish diet. The high carbohydrate composition in the formulated diet triggered higher metabolic pathways related to carbon and lipid metabolism in the water of the FD pond. Sediment had significantly higher microbial diversity than the rearing water. In sediment, the dominating genus, Sulfurovum and Desulfobulbus, were found to be positively correlated by network analysis, which had similar functionality in sulfur transformation. The relatively higher rates of antibiotic biosynthesis in the FFD sediment might be related to the pathogenic bacteria introduced by the trash fish diet. The difference in microbial community composition and metabolic pathways may be associated with the different pathways for nutrient cycling and animal growth performance. The formulated diet was determined to be more ecologically and economically sustainable than the frozen fish diet for marine IMTA pond systems.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.