Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561997
Title Soil carbon sequestration in grazing systems: managing expectations
Author(s) Godde, Cécile M.; Boer, Imke J.M. de; Ermgassen, Erasmus zu; Herrero, Mario; Middelaar, Corina E. van; Muller, Adrian; Röös, Elin; Schader, Christian; Smith, Pete; Zanten, Hannah H.E. van; Garnett, Tara
Source Climatic Change (2020). - ISSN 0165-0009
DOI https://doi.org/10.1007/s10584-020-02673-x
Department(s) WIAS
Animal Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Cattle - Climate change - Grasslands - Greenhouse gases - Livestock - Soil carbon
Abstract

Grazing systems emit greenhouse gases, which can, under specific agro-ecological conditions, be partly or entirely offset by soil carbon sequestration. However, any sequestration is time-limited, reversible, and at a global level outweighed by emissions from grazing systems. Thus, grazing systems are globally a net contributor to climate change and the time scale of key processes needs to be factored into any mitigation efforts. Failing to do so leads to unrealistic expectations of soil carbon management in grazing systems as a mitigation strategy. Protecting the large carbon stocks in grazing lands is also essential in order to avoid further climate change from additional CO2 release. Despite the time-limited and reversible nature of soil carbon sequestration in grazing lands, sequestration should be promoted in cases where it delivers environmental and agronomic benefits as well as for its potential, particularly on degraded land, to increase the feasibility of limiting global warming to less than 2 or preferably 1.5 °C. Some peer-reviewed sequestration estimates are of a similar order of magnitude to other food systems mitigation options over a 10–20 years period, such as reducing food loss and waste by 15% or aligning diets with current health related dietary-recommendations. However, caution should be applied to such comparisons since mitigation estimates are associated with large uncertainties and will ultimately depend on the economic cost-benefit relation, feasibility of implementation and time frame considered.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.