Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562250
Title Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets
Author(s) Suarez-Diez, Maria; Porras, Santiago; Laguna-Teno, Felix; Schaap, Peter J.; Tamayo-Ramos, Juan A.
Source Scientific Reports 10 (2020)1. - ISSN 2045-2322
DOI https://doi.org/10.1038/s41598-020-60101-7
Department(s) Systems and Synthetic Biology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract

Graphene nanomaterials have attracted a great interest during the last years for different applications, but their possible impact on different biological systems remains unclear. Here, an assessment to understand the toxicity of commercial polycarboxylate functionalized graphene nanoplatelets (GN) on the unicellular fungal model Saccharomyces cerevisiae was performed. While cell proliferation was not negatively affected even in the presence of 800 mg L−1 of the nanomaterial for 24 hours, oxidative stress was induced at a lower concentration (160 mg L−1), after short exposure periods (2 and 4 hours). No DNA damage was observed under a comet assay analysis under the studied conditions. In addition, to pinpoint the molecular mechanisms behind the early oxidative damage induced by GN and to identify possible toxicity pathways, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L−1 of GN was studied. Both GN concentrations induced expression changes in a common group of genes (337), many of them related to the fungal response to reduce the nanoparticles toxicity and to maintain cell homeostasis. Also, a high number of genes were only differentially expressed in the GN800 condition (3254), indicating that high GN concentrations can induce severe changes in the physiological state of the yeast.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.