Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562308
Title Biomass and crop height estimation of different crops using UAV-based LiDAR
Author(s) Harkel, Jelle ten; Bartholomeus, Harm; Kooistra, Lammert
Source Remote Sensing 12 (2019)1. - ISSN 2072-4292
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Biomass - Crop height - Field phenotyping - UAV-based LiDAR

Phenotyping of crops is important due to increasing pressure on food production. Therefore, an accurate estimation of biomass during the growing season can be important to optimize the yield. The potential of data acquisition by UAV-LiDAR to estimate fresh biomass and crop height was investigated for three different crops (potato, sugar beet, and winter wheat) grown inWageningen (The Netherlands) from June to August 2018. Biomass was estimated using the 3DPI algorithm, while crop height was estimated using the mean height of a variable number of highest points for each m2. The 3DPI algorithm proved to estimate biomass well for sugar beet (R2 = 0.68, RMSE = 17.47 g/m2) and winter wheat (R2 = 0.82, RMSE = 13.94 g/m2). Also, the height estimates worked well for sugar beet (R2 = 0.70, RMSE = 7.4 cm) and wheat (R2 = 0.78, RMSE = 3.4 cm). However, for potato both plant height (R2 = 0.50, RMSE = 12 cm) and biomass estimation (R2 = 0.24, RMSE = 22.09 g/m2), it proved to be less reliable due to the complex canopy structure and the ridges on which potatoes are grown. In general, for accurate biomass and crop height estimates using those algorithms, the flight conditions (altitude, speed, location of flight lines) should be comparable to the settings for which the models are calibrated since changing conditions do influence the estimated biomass and crop height strongly.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.