Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562527
Title E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano
Author(s) Suárez, Francisco; Lobos, Felipe; La Fuente, Alberto De; Vilà-guerau De Arellano, Jordi; Prieto, Ana; Meruane, Carolina; Hartogensis, Oscar
Source Water 12 (2020)3. - ISSN 2073-4441
Department(s) WIMEK
Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract In the endorheic basins of the Altiplano, water is crucial for sustaining unique ecological habitats. Here, the wetlands act as highly localized evaporative environments, and little is known about the processes that control evaporation. Understanding evaporation in the Altiplano is challenging because these environments are immersed in a complex topography surrounded by desert and are affected by atmospheric circulations at various spatial scales. Also, these environments may be subject to evaporation enhancement events as the result of dry air advection. To better characterize evaporation processes in the Altiplano, the novel Evaporation caused by Dry Air Transport over the Atacama Desert (E-DATA) field campaign was designed and tested at the Salar del Huasco, Chile. The E-DATA combines surface and airborne measurements to understand the evaporation dynamics over heterogeneous surfaces, with the main emphasis on the open water evaporation. The weather and research forecasting model was used for planning the instruments installation strategy to understand how large-scale air flow affects evaporation. Instrumentation deployed included: meteorological stations, eddy covariance systems, scintillometers, radiosondes and an unmanned aerial vehicle, and fiber-optic distributed temperature sensing. Additional water quality and CO2 fluxes measurements were carried out to identify the link between meteorological conditions and the biochemical dynamics of Salar del Huasco. Our first results show that, in the study site, evaporation is driven by processes occurring at multiple spatial and temporal scales and that, even in the case of available water and energy, evaporation is triggered by mechanical turbulence induced by wind. View Full-Text
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.