Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562555
Title On the pros and cons of Bayesian kinetic modeling in food science
Author(s) Boekel, T. van
Source Trends in Food Science and Technology 99 (2020). - ISSN 0924-2244 - p. 181 - 193.
DOI https://doi.org/10.1016/j.tifs.2020.02.027
Department(s) Food Quality and Design
VLAG
Publication type Article in professional journal
Publication year 2020
Abstract Background: Kinetics is an important part of food science and statistics is a necessary key element in modeling. Ordinary least-squares (OLS) regression is mostly used to obtain parameter estimates and their uncertainties; this
is done within the frequentist framework. Scope and approach: This article introduces Bayesian statistics as an alternative to OLS. The background of Bayesian statistics is briefly explained, emphasizing the difference with the frequentist approach. Basically, frequentists go for the probability of data given a hypothesis, resulting in point estimates, while Bayesians go for the probability of a hypothesis given the data, resulting in probability distributions for parameters. This study
shows how to apply the Bayesian approach to kinetic problems using freely available R packages. To focus on the Bayesian approach, the kinetic problem presented is a trivial zero-order reaction concerning the formation of furan in a soy sauce. Key findings and conclusions: The main result is numerical and graphical output showing probability distributions of parameters. Interpretation of regression results is shown leading to the conclusion that the Bayesian approach yields a more intuitive result with richer information than the conventional OLS approach. The pros and cons of the Bayesian approach are highlighted, the major pro being the intuitive and informative result and the major con that one has to learn and apply a programming language like R or Python. The Bayesian approach is very general and the outline shown here can be applied easily to much more complicated kinetic models.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.