Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562570
Title Flood risk reduction and flow buffering as ecosystem services: A flow persistence indicator for watershed health
Author(s) Noordwijk, M. Van; Tanika, L.; Lusiana, B.
Source Hydrology and Earth System Sciences Discussions 2016 (2016). - ISSN 1812-2108
Department(s) Plant Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2016

Flood damage depends on location and adaptation of human presence and activity to inherent variability of river flow. Reduced predictability of river flow is a common sign of degrading watersheds associated with increased flooding risk and reduced dry-season flows. The dimensionless FlowPer parameter (Fp), representing predictability, is key to a parsimonious recursive model of river flow, Qt = FpQt-1 + (1-Fp)(Pt-Etx), with Q, P and E expressed in mm d-1. Fp varies between 0 and 1, and can be derived from a time-series of measured (or modeled) river flow data. The spatially averaged precipitation term Pt and preceding cumulative evapotranspiration since previous rain Etx are treated as constrained but unknown, stochastic variables. A decrease in Fp from 0.9 to 0.8 means peak flow doubling from 10 to 20% of peak rainfall (minus its accompanying Etx) and, in a numerical example, an increase in expected flood duration by 3 days. We compared Fp estimates from four meso-scale watersheds in Indonesia and Thailand, with varying climate, geology and land cover history, at a decadal time scale. Wet-season (3-monthly) Fp values are lower than dry-season values in climates with pronounced seasonality. A wet-season Fp value above 0.7 was achievable in forest-agroforestry mosaic case studies. Interannual variability in Fp is large relative to effects of land cover change; multiple years of paired-plot data are needed to reject no-change null-hypotheses. While empirical evidence at scale is understandably scarce, Fp trends over time serve as a holistic scale-dependent performance indicator of degrading/recovering watershed health.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.