Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562920
Title The Price equation as a bridge between animal breeding and evolutionary biology
Author(s) Bijma, P.
Source Philosophical Transactions of the Royal Society B. Biological sciences 375 (2020)1797. - ISSN 0962-8436 - 1 p.
Department(s) WIAS
Animal Breeding and Genomics
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) artificial selection - breeder's equation - genotype–environment covariance - indirect genetic effect - infectious disease prevalence

The genetic response to selection is central to both evolutionary biology and animal and plant breeding. While Price's theorem (PT) is well-known in evolutionary biology, most breeders are unaware of it. Rather than using PT, breeders express response to selection as the product of the intensity of selection (i), the accuracy of selection (ρ) and the additive genetic standard deviation (σA); R = iρσA. In contrast to the univariate 'breeder's equation', this expression holds for multivariate selection on Gaussian traits. Here, I relate R = iρσA to PT, and present a generalized version, R = iwρA,wσA, valid irrespective of the trait distribution. Next, I consider genotype-environment covariance in relation to the breeder's equation and PT, showing that the breeder's equation may remain valid depending on whether the genotype-environment covariance works across generations. Finally, I consider the response to selection in the prevalence of an endemic infectious disease, as an example of an emergent trait. The result shows that disease prevalence has much greater heritable variation than currently believed. The example also illustrates that the indirect genetic effect approach moves elements of response to selection from the second to the first term of PT, so that changes acting via the social environment come within the reach of quantitative genetics. This article is part of the theme issue 'Fifty years of the Price equation'.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.