Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 562952
Title Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies
Author(s) Lian, Puqiao; Braber, Saskia; Garssen, Johan; Wichers, Harry J.; Folkerts, Gert; Fink-Gremmels, Johanna; Varasteh, Soheil
Source Nutrients 12 (2020)3. - ISSN 2072-6643
DOI https://doi.org/10.3390/nu12030734
Department(s) Food, Health & Consumer Research
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Heat stress (HS) - Intestinal integrity - Nutritional supplements - Reactive oxygen species (ROS) - Resilience pathways
Abstract

The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.