Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 563158
Title Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
Author(s) Volpi, Michele; Tuia, Devis
Source IEEE Transactions on Geoscience and Remote Sensing 55 (2017)2. - ISSN 0196-2892 - p. 881 - 893.
DOI https://doi.org/10.1109/TGRS.2016.2616585
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Aerial images - classification - convolutional neural networks (CNNs) - deconvolution networks - deep learning - semantic labeling - subdecimeter resolution
Abstract

Semantic labeling (or pixel-level land-cover classification) in ultrahigh-resolution imagery (<10 cm) requires statistical models able to learn high-level concepts from spatial data, with large appearance variations. Convolutional neural networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper, we present a CNN-based system relying on a downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including: 1) the state-of-the-art numerical accuracy; 2) the improved geometric accuracy of predictions; and 3) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam subdecimeter resolution data sets, involving the semantic labeling of aerial images of 9- and 5-cm resolution, respectively. These data sets are composed by many large and fully annotated tiles, allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures with the proposed one: standard patch classification, prediction of local label patches by employing only convolutions, and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.