Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 563631
Title Understanding angular effects in VHR imagery and their significance for urban land-cover model portability : A study of two multi-angle in-track image sequences
Author(s) Matasci, Giona; Longbotham, Nathan; Pacifici, Fabio; Kanevski, Mikhail; Tuia, Devis
Source ISPRS Journal of Photogrammetry and Remote Sensing 107 (2015). - ISSN 0924-2716 - p. 99 - 111.
DOI https://doi.org/10.1016/j.isprsjprs.2015.05.004
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Atmospheric compensation - Domain adaptation - Histogram matching - Image classification - Maximum Mean Discrepancy - Multi-angle acquisitions
Abstract

This paper investigates the angular effects causing spectral distortions in multi-angle remote sensing imagery. We study two WorldView-2 multispectral in-track sequences acquired over the cities of Atlanta, USA, and Rio de Janeiro, Brazil, consisting of 13 and 20 co-located images, respectively. The sequences possess off-nadir acquisition angles up to 47.5° and bear markedly different sun-satellite configurations with respect to each other. Both scenes comprise classic urban structures such as buildings of different size, road networks, and parks. First, we quantify the degree of distortion affecting the sequences by means of a non-linear measure of distance between probability distributions, the Maximum Mean Discrepancy. Second, we assess the ability of a classification model trained on an image acquired at a certain view angle to predict the land-cover of all the other images in the sequence. The portability across the sequence is investigated for supervised classifiers of different nature by analyzing the evolution of the classification accuracy with respect to the off-nadir look angle. For both datasets, the effectiveness of physically- and statistically-based normalization methods in obtaining angle-invariant data spaces is compared and synergies are discussed. The empirical results indicate that, after a suitable normalization (histogram matching, atmospheric compensation), the loss in classification accuracy when using a model trained on the near-nadir image to classify the most off-nadir acquisitions can be reduced to as little as 0.06 (Atlanta) or 0.03 (Rio de Janeiro) Kappa points when using a SVM classifier.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.