Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 564423
Title Determinants of legacy effects in pine trees – implications from an irrigation-stop experiment
Author(s) Zweifel, Roman; Etzold, Sophia; Sterck, Frank; Gessler, Arthur; Anfodillo, Tommaso; Mencuccini, Maurizio; Arx, Georg von; Lazzarin, Martina; Haeni, Matthias; Feichtinger, Linda; Meusburger, Katrin; Knuesel, Simon; Walthert, Lorenz; Salmon, Yann; Bose, Arun K.; Schoenbeck, Leonie; Hug, Christian; Girardi, Nicolas De; Giuggiola, Arnaud; Schaub, Marcus; Rigling, Andreas
Source New Phytologist 227 (2020)4. - ISSN 0028-646X - p. 1081 - 1096.
DOI https://doi.org/10.1111/nph.16582
Department(s) PE&RC
Forest Ecology and Forest Management
Horticulture & Product Physiology
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) cambial activity - drought stress - ecological memory - irrigation experiment - osmoregulation - point dendrometer - radial stem growth - TreeNet
Abstract

Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree’s responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.