Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 566297
Title Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system
Author(s) Hao, Tianxiang; Zhu, Qichao; Zeng, Mufan; Shen, Jianbo; Shi, Xiaojun; Liu, Xuejun; Zhang, Fusuo; Vries, Wim de
Source Journal of Environmental Management 270 (2020). - ISSN 0301-4797
DOI https://doi.org/10.1016/j.jenvman.2020.110888
Department(s) Sustainable Soil Use
WIMEK
Environmental Systems Analysis
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Ammonium chloride - Cropland - Soil acidification - Soil pH - Urea
Abstract

Nitrogen (N) fertilizer-induced soil acidification in Chinese croplands is well-known, but insight in the impacts of different N fertilizer management approaches (fertilizer type and rate) on soil acidification rates is very limited. Here, we conducted a field experiment on a moderate acid soil to quantify soil acidification rates in response to N fertilization by different fertilizer types and N rates through monitoring the fate of elements (mainly nutrients) related to H+ production and consumption. Two N fertilizer types (urea and NH4Cl) and three N rates (control, optimized and conventional, 0/120/240 kg N ha−1 for wheat, 0/160/320 kg N ha−1 for maize) were included. Nitrogen addition led to an average H+ production of 4.0, 8.7, 11.4, 29.7 and 52.6 keq ha−1 yr−1, respectively, for the control, optimized urea, conventional urea, optimized NH4Cl and conventional NH4Cl plots. This was accompanied with a decline in soil base saturation of 1–10% and in soil pH of 0.1–0.7 units in the topsoil (0–20 cm). Removal of base cations by crop harvesting and N transformations contributed ~70% and ~20% to the H+ production in the urea treated plots, being ~20% and ~75% in the NH4Cl treated plots, respectively. The large NH4+ input via fertilization in the NH4Cl treated plots strongly enhanced the H+ production induced by N transformations. The low contribution of N transformations to the H+ production in the urea treated plots was due to the limited NO3 leaching, induced by the high N losses to air caused by denitrification. Increased N addition by urea, however, strongly increased H+ production by enhanced plant uptake of base cations, mainly due to a large potassium uptake in straw. Our results highlight the important role of optimizing fertilizer form and N rate as well as straw return to the field in alleviating soil acidification.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.