Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 566450
Title Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro
Author(s) Bai, Yu; Zhao, Jin Biao; Tao, Shi Yu; Zhou, Xing Jian; Pi, Yu; Gerrits, Walter J.J.; Johnston, Lee J.; Zhang, Shi Yi; Yang, Hong Jian; Liu, Ling; Zhang, Shuai; Wang, Jun Jun
Source Journal of the Science of Food and Agriculture 100 (2020)11. - ISSN 0022-5142 - p. 4282 - 4291.
DOI https://doi.org/10.1002/jsfa.10470
Department(s) WIAS
Animal Nutrition
Laboratory of Genetics
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) fiber-rich co-products - gas production - in vitro fermentation - microbial community - short chain fatty acid
Abstract

BACKGROUND: The efficient utilization of fiber-rich co-products is important for optimizing feed resource utilization and animal health. This study was conducted to evaluate the fermentation characteristics of fiber-rich co-products, which had equal quantities of total dietary fiber (TDF), at different time points using batch in vitro methods. It considered their gas production, short-chain fatty acid (SCFA) production, and microbial composition. RESULTS: The fermentation of wheat bran (WB) and oat bran (OB) showed higher and faster (P < 0.05) gas and SCFA production than corn bran (CB), sugar beet pulp (SBP), and soybean hulls (SH). The α-diversity was higher in the CB, SBP, and SH groups than in the WB and OB groups (P < 0.05). At the phylum level, OB and WB fermentation showed lower (P < 0.05) relative abundance of Actinobacteria than the CB, SBP, and SH groups. At the genus level, OB and WB fermentation increased the Enterococcus population in comparison with the CB, SBP, and SH groups, whereas CB and SBP fermentation improved the relative abundance of the Christensenellaceae R-7 group more than the WB, OB, and SH groups (P < 0.05). CONCLUSION: Overall, WB and OB were rapidly fermented by fecal microbiota, in contrast with SBP, SH, and CB. Fermentation of different fiber-rich co-products with an equal TDF content gives different responses in terms of microbial composition and SCFA production due to variations in their physicochemical properties and molecular structure.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.