Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 568059
Title Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System
Author(s) Wang, Shilei; Xiong, Wu; Wang, Yuqiao; Nie, Yao; Wu, Qun; Xu, Yan; Geisen, Stefan
Source mSystems 5 (2020)4. - ISSN 2379-5077
DOI https://doi.org/10.1128/mSystems.00555-20
Department(s) PE&RC
Laboratory of Nematology
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract We are rapidly increasing our understanding on the spatial distribution of microbial communities. However, microbial functioning, as well as temporal differences and mechanisms causing microbial community shifts, remains comparably little explored. Here, using Chinese liquor fermentation as a model system containing a low microbial diversity, we studied temporal changes in microbial community structure and functioning. For that, we used high-throughput sequencing to analyze the composition of bacteria and fungi and analyzed the microbially derived metabolome throughout the fermentation process in all four seasons in both 2018 and 2019. We show that microbial communities and the metabolome changed throughout the fermentation process in each of the four seasons, with metabolome diversity increasing throughout the fermentation process. Across seasons, bacterial and fungal communities as well as the metabolome driven by 10 indicator microorganisms and six metabolites varied even more. Daily average temperature in the external surroundings was the primary determinant of the observed temporal microbial community and metabolome changes. Collectively, our work reveals critical insights into patterns and processes determining temporal changes of microbial community composition and functioning. We highlight the importance of linking taxonomic to functional changes in microbial ecology to enable predictions of human-relevant applications.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.