Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 568600
Title Removing top leaves increases yield and nutrient uptake in maize plants
Author(s) Raza, Muhammad Ali; Werf, Wopke van der; Ahmed, Mukhtar; Yang, Wenyu
Source Nutrient Cycling in Agroecosystems 118 (2020)1. - ISSN 1385-1314 - p. 57 - 73.
DOI https://doi.org/10.1007/s10705-020-10082-w
Department(s) PE&RC
Crop and Weed Ecology
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Maize - Nitrogen - Phosphorus - Potassium - Seed filling-phase
Abstract

Abstract: Intraspecific competition for light affects nutrient uptake of maize, especially during the seed filling phase (from the blistering-stage to physiological-maturity). Partial leaf removal only affects the top leaves and improves the light-environment, which could then enhance nutrient uptake during the seed filling phase. However, there is a shortage of quantitative information on the yield effects of such a management measure. A 3-year field trial was conducted to evaluate the impact of different leaf removal treatments (no removal of leaves (D0: control), removal of two leaves (D2), removal of four leaves (D4), and removal of six leaves (D6) from maize-canopy) on total dry matter accumulation, and nitrogen, phosphorus, and potassium uptake at the blistering-stage and physiological-maturity, plus seed number per plant, seed weight, and seed yield at physiological maturity. Compared to D0, at physiological-maturity, D2 significantly increased total dry matter accumulation (by 9%), and uptake of nitrogen (by 5%), phosphorus (by 10%), and potassium (by 4%); while excessive leaf removal treatments considerably reduced dry matter accumulation and nutrient uptake. Importantly, during the seed filling phase of maize, treatment D2 significantly enhanced the uptake of nitrogen, phosphorus, and potassium by 76%, 40%, and 65%, respectively, compared to control. Treatment D2 increased seed number per plant (by 6.4%, from 448 under D0 to 477 in D2) and seed weight (by 5.7%). Relative to control, maize in D2 had 12%, 14%, and 11%, higher seed-yields in 2017, 2018, and 2019, respectively, and it also improved the economic profit when taking into account labor costs. Graphic abstract: Graphical representation of changes in light transmittance, photosynthesis, nutrient uptake, carbohydrate, and dry matter accumulation in maize plants as affected by different leaf removal treatments. Treatment codes represent no defoliation (D0: control), removal of two leaves (D2), removal of four leaves (D4), and removal of six leaves (D6) from the top of maize canopy. Yellow and green arrows show the light environment and leaf area of maize plants. The black arrows represent the regulating directions of leaf removal treatments on maize growth and development in this paper. The graphical abstract clearly demonstrates the significant improvement of optimum leaf removal treatment (D2) as compared to control (D0). The red and blue arrows show the relevant increase and decrease of the mentioned components between the optimal leaf removal and control. [Figure not available: see fulltext.]

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.