Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 569576
Title Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk
Author(s) Thomas, Minta; Sakoda, Lori C.; Hoffmeister, Michael; Rosenthal, Elisabeth A.; Lee, Jeffrey K.; Duijnhoven, Franzel J.B. van; Platz, Elizabeth A.; Wu, Anna H.; Dampier, Christopher H.; Chapelle, Albert de la; Wolk, Alicja; Joshi, Amit D.; Burnett-Hartman, Andrea; Gsur, Andrea; Lindblom, Annika; Castells, Antoni; Win, Aung Ko; Namjou, Bahram; Guelpen, Bethany Van; Tangen, Catherine M.; He, Qianchuan; Li, Christopher I.; Schafmayer, Clemens; Joshu, Corinne E.; Ulrich, Cornelia M.; Bishop, D.T.; Buchanan, Daniel D.; Schaid, Daniel; Drew, David A.; Muller, David C.; Duggan, David; Crosslin, David R.; Albanes, Demetrius; Giovannucci, Edward L.; Larson, Eric; Qu, Flora; Mentch, Frank; Giles, Graham G.; Hakonarson, Hakon; Hampel, Heather; Stanaway, Ian B.; Figueiredo, Jane C.; Huyghe, Jeroen R.; Minnier, Jessica; Chang-Claude, Jenny; Hampe, Jochen; Harley, John B.; Visvanathan, Kala; Curtis, Keith R.; Offit, Kenneth; Li, Li; Marchand, Loic Le; Vodickova, Ludmila; Gunter, Marc J.; Jenkins, Mark A.; Slattery, Martha L.; Lemire, Mathieu; Woods, Michael O.; Song, Mingyang; Murphy, Neil; Lindor, Noralane M.; Dikilitas, Ozan; Pharoah, Paul D.P.; Campbell, Peter T.; Newcomb, Polly A.; Milne, Roger L.; MacInnis, Robert J.; Castellví-Bel, Sergi; Ogino, Shuji; Berndt, Sonja I.; Bézieau, Stéphane; Thibodeau, Stephen N.; Gallinger, Steven J.; Zaidi, Syed H.; Harrison, Tabitha A.; Keku, Temitope O.; Hudson, Thomas J.; Vymetalkova, Veronika; Moreno, Victor; Martín, Vicente; Arndt, Volker; Wei, Wei Qi; Chung, Wendy; Su, Yu Ru; Hayes, Richard B.; White, Emily; Vodicka, Pavel; Casey, Graham; Gruber, Stephen B.; Schoen, Robert E.; Chan, Andrew T.; Potter, John D.; Brenner, Hermann; Jarvik, Gail P.; Corley, Douglas A.; Peters, Ulrike; Hsu, Li
Source American Journal of Human Genetics 107 (2020)3. - ISSN 0002-9297 - p. 432 - 444.
Department(s) Nutrition and Disease
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) cancer risk prediction - colorectal cancer - machine learning - polygenic risk score

Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.