Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 65321
Title Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants
Author(s) Laugé, R.; Goodwin, P.H.; Wit, P.J.G.M. de; Joosten, M.H.A.J.
Source The Plant Journal 23 (2000)6. - ISSN 0960-7412 - p. 735 - 745.
Department(s) Laboratory of Phytopathology
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract The resistance of tomato (Lycopersicon esculentum) to the pathogenic fungus Cladosporium fulvum complies with the gene-for-gene concept. Host resistance is based on specific recognition of extracellular fungal proteins, resulting in a hypersensitive response (HR). Five proteins secreted by C. fulvum were purified and the encoding cDNA clone was obtained from two novel ones among them. Various tomato breeding lines and accessions of Lycopersicon pimpinellifolium were tested for their recognitional specificity by injection of the purified proteins or potato virus X-based expression of the cDNA. We found that HR-associated recognition of one or more of these proteins, in addition to recognition of the race-specific elicitors AVR4 and AVR9 of C. fulvum, occurs among Lycopersicon species. Studies on the inheritance of this recognition confirmed that single dominant genes are involved. Furthermore, one of the extracellular proteins of C. fulvum is specifically recognized by Nicotiana paniculata, which is not a host for C. fulvum. These results indicate that plants have a highly effective surveillance system for the presence of 'foreign' proteins, which, together with the high mutation rate of pathogens, can explain the complex gene-for-gene relationships frequently observed in pathosystems.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.