Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 65334
Title Wetting of a polymer brush, a system with pronounced critical wetting
Author(s) Leermakers, F.A.M.; Mercurieva, A.; Male, J. van; Zhulina, E.B.; Besseling, N.A.M.; Birshtein, T.M.
Source Langmuir 16 (2000). - ISSN 0743-7463 - p. 7082 - 7087.
DOI https://doi.org/10.1021/la991354a
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract We consider a polymer brush composed of units of type P, at a solid substrate S in an incompatible binary A/L solvent mixture. At A/L coexistence the film thickness of the wetting component A depends mainly on the second virial coefficient AP of polymer-polymer contacts in an A-rich phase: with increasing AP the film thickness jumps from a microscopic to a mesoscopic value and then continues to grow proportionally to AP. The film grows smoothly without bounds when the fluid interface is further out than the segments of the brush chains can reach. This escape of the A-L interface from the brush coincides with the (second-order) wetting transition and occurs at . Substrates covered by a polymer brush are excellent surfaces to measure critical wetting because the wetting behavior can be tuned independently from the short-range interactions of the solvents with the solid substrate. For relatively thin brushes, van der Waals contributions can seriously modify these predictions. However, as the brush thickness is proportional to the chain length N, the relative contribution of these forces can be tuned; i.e., for a sufficiently large brush height the (long-range) van der Waals forces can be ignored. The wetting scenario has been elaborated by a numerical self-consistent-field theory for inhomogeneous polymer systems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.