Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 65630
Title Identification and molecular characterization of the first a-xylosidase from an Archaeon
Author(s) Moracci, M.; Cobucci-Ponzano, B.; Trincone, A.; Fusco, S.; Rosa, M. de; Oost, J. van der; Sensen, C.W.; Charlebois, R.L.; Rossi, M.
Source Journal of Biological Chemistry 275 (2000). - ISSN 0021-9258 - p. 22082 - 22089.
DOI https://doi.org/10.1074/jbc.M910392199
Department(s) Microbiology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract We here report the first molecular characterization of an -xylosidase (XylS) from an Archaeon. Sulfolobus solfataricus is able to grow at temperatures higher than 80 °C on several carbohydrates at acidic pH. The isolated xylS gene encodes a monomeric enzyme homologous to -glucosidases, -xylosidases, glucoamylases and sucrase-isomaltases of the glycosyl hydrolase family 31. xylS belongs to a cluster of four genes in the S. solfataricus genome, including a -glycosidase, an hypothetical membrane protein homologous to the major facilitator superfamily of transporters, and an open reading frame of unknown function. The -xylosidase was overexpressed in Escherichia coli showing optimal activity at 90 °C and a half-life at this temperature of 38 h. The purified enzyme follows a retaining mechanism of substrate hydrolysis, showing high hydrolytic activity on the disaccharide isoprimeverose and catalyzing the release of xylose from xyloglucan oligosaccharides. Synergy is observed in the concerted in vitro hydrolysis of xyloglucan oligosaccharides by the -xylosidase and the -glycosidase from S. solfataricus. The analysis of the total S. solfataricus RNA revealed that all the genes of the cluster are actively transcribed and that xylS and orf3 genes are cotranscribed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.