Creating space for change: farmers’ learning groups in the Netherlands

Jet Proost and Willem van Weperen

There is a long tradition of farmer study groups in the Netherlands. In the late nineteenth century, it was popular for farmers to meet in the pub after the church service on Sundays, where they would sit together and exchange news, season related-affairs and experiences on their farm. For example, this was the way that maize growing was introduced in the Netherlands. Some farmers experimented with the new crop and then told their fellow farmers about the advantages. Farmers formed local groups often around new techniques, such as the use of fertilisers, improved ploughs and animal breeds.

In the 1970s and 1980s, the Dutch horticulture sector developed prosperously thanks to the free flow of information between growers. Farmers’ study groups generated knowledge and

Box 1 PMOV platform of experimenting dairy farmers

In the Netherlands intensive fertilisation practices for pastures combined with the high-protein and low-fibre feed used for dairy cattle pose a pressing problem for Dutch intensive dairy farms. The high-input system not only creates health problems in the cattle and increased veterinary costs, there are also serious consequences for the environment: the quality of drinking water is affected, and the high emission of ammonia affects the natural environment.

In the 1980s the Ministry of Agriculture introduced a series of restrictive measures to ensure that dairy farmers would meet the environmental targets set by the European Union. It became compulsory, for example, to inject the manure as slurry into the soil, and a mineral bookkeeping system for dairy farmers was introduced. This bookkeeping revealed that the efficiency of nitrogen use in intensive dairy production had become very low.

During this period, groups of farmers in the north of the country began to experiment with reducing the amount of protein and increasing the amount of roughage in the diet of their dairy cattle, with the aim of optimising the interactions between soil, plants and animals on their farm. An essential notion in this holistic approach is that a change in one part of the farming system has consequences for other parts. Over the years, other farmers have taken up this approach and, together with researchers, they founded the PMOV platform to promote ‘eco-technical’ dairy farming.

Around 40 experimenting farmers in the province of Drenthe initiated study groups. Their aim was to improve the feeding of their cattle in a way that would also have a positive effect on both the farmers’ income and the environment. Two years later, the initiative had grown to 100 farmers in 11 groups. The provincial authorities financed this project as part of their sustainability policy. After five years, the results are clearly visible. The system has resulted in lower ammonia emissions and improved efficiency in nitrogen use. It has also resulted in better soil quality, water quality, improved animal health and reduced veterinary costs. The farmers have been able to maintain the milk yield with lower costs. Both humans and animals experience less stress, and it is possible to comply with the environmental norms imposed by EU regulations.

Jurjen de Jong from Oostermeer, member of the environmental cooperative Friese Wouden, feeding his cows more fibre and less protein, to reduce ammonia volatilisation and improve soil life.
information faster than formal research institutions. Nowadays farmers’ learning groups are still popular as spontaneous self-organised gatherings, while agricultural advisors and researchers use them as an efficient way to reach farmers.

Potential for innovation
In many conventional projects, the researchers and advisors take the initiative for establishing farmers’ groups. The underlying assumption is that research institutes generate knowledge, which provides ‘solid evidence’ from the technical sciences as the basis for innovations. Advisors are needed to lead the discussions, as a means to get the message about the innovation across to the farmers.

However, over time it has become clear that different approaches to learning may be required. A group of international scholars (LEARNgroup, 2005) has shown, for example, that for processes of innovation in the management of complex ecosystems, social issues often play a far more dominant role than technical knowledge.

Moreover, if more players come into the picture, different kinds of knowledge have to be taken into account.

We have now learned that farmers’ groups have an enormous potential for innovation. Learning, and more specifically group-based learning, is recognised as a means to realise change at farmer level for more sustainable production, in the environmental and economic, as well as social perspectives. Learning is more than the result of reflection on accumulated data. One example of this in the Dutch dairy farming sector is the PMOV farmer study groups, which have been able to seek their own solutions to environmental problems (Box 1).

Co-constructors of knowledge
But what activities in a group trigger learning? What ingredients make the group members say ‘aha’ and enable them to reconsider ideas and beliefs they have taken for granted so far? It is widely recognised that changes for sustainable agriculture require shared commitment and collective action. In groups, farmers build new relationships over time, and create a vocabulary to discuss the issues that are of importance to them. Operational issues may be popular at the start, but gradually they find words and expressions that they already know. Contextual learning is more than theories or models. New knowledge can be communicated, and cutting-edge ideas can be experimented with. If this social part of the process is neglected, the group’s conversation seldom goes beyond short-term, everyday technological issues. In order to create connectivity between farmers, researchers and advisors, it is necessary that the participants see each other as co-constructors of knowledge. This includes reflexive self-understanding of the (institutional) culture and of the identity of all involved.

We would like to illustrate this with another Dutch example from a long-term project in organic dairy farming, called Bioveem. Here the so-called novelty-approach is used, a methodology which includes farmer study groups, on-farm research on themes identified in conversations between farmers, researchers and advisors, and communication to the farming community at large (Box 2).

Set of basics
Supporting group learning requires the creation of an environment that is conducive to learning, and is based on two crucial concepts: constructive learning and contextual learning. The underlying notion of constructive learning is that a farmer is regarded as an active constructor of knowledge. People’s experiences are point of departure, rather than theories or models. New knowledge is combined with what a person already knows. Contextual learning is about the circumstances in which we pick up new information: the more that happens in a group session, the more context is created, which enhances learning.

For groups to be effective there are also other ‘basics’ to need to be taken into account, like group size (maximum 12-15 members), composition (some heterogeneity), locality (keep it practical), meeting place (at farms), frequency of gatherings (balance between purpose and continuity), coordination (farmers themselves) and facilitation (by preference). Activities can vary and might include trips to experimental farms, visiting each other’s farm, inviting advisors or other experts, information evenings, and comparing farm results and on-farm experiments.

Participants report that they like the groups for various reasons, for instance the way topics are discussed, the moral support from colleagues, and testing of ideas and opinions. Moreover, the group meetings provide an excuse to visit other people’s farms and see unexpected examples of innovation. These experiences show that there is potential in farmers’ groups: farmers are quite capable of analysing and resolving their own problems. Strengthened with appropriate support, they can find innovative solutions that are adapted to the local conditions and opportunities.

References

Jet Proost, Jet Proost Communicatie Advies, Bennekom, The Netherlands, jet.proost@planet.nl

Willem van Weperen, ETC Foundation, Leusden, The Netherlands, willem.van.weperen@etcnl.nl