A novel methodology for ex ante assessment of climate change adaptation strategies

examples from East Africa

Jetse Stoorvogel, Lieven Claessens, John Antle
Philip Thornton, Mario Herrero

International conference on crop improvement, ideotyping, and Modelling for African cropping systems under climate change
Backgrounds

- Current farming systems in Eastern Africa
 - Semi-subsistence
 - Close to threshold
 - Climate change
 - Sensitive to climate change
- Application for Vihiga
Objectives

- Assess the impacts of climate change
- Design a methodology to evaluate adaptation strategies
- Test this methodology to identify breeding targets
Methods

Δ Climate → Δ Production → Δ Technologies

Δ Management

Impacts
Tradeoff Analysis

Two versions

- **Full model**
 - Models management decisions at the field level (including *e.g.* crop allocation and fertilizer use).
 - Integrates crop growth models, econometric models, and environmental impact models.
 - Data intensive

- **Minimum data model**
 - Compares two systems
 - With and without climate change
 - With and without new technologies
Tradeoff Analysis - MD

Region

Farm type 1
Farm type 2
Farm type 3

Activity 1
Activity 2
Activity 3

Yield
Cost
Price
Climate change in Vihiga

1970-2000	2040-2060	% change
Rainfall (mm) | 1701 | 1301 | -24
Tmin (°C) | 16.9 | 18.9 | 12
Tmax (°C) | 25.4 | 28.3 | 12

- 1 model: ECHAM4 (Max Planck)
- 1 scenario: A1B (Rapid economic growth)
- Yearly total (rainfall) and averages (temperature)
Yield effects of climate change Vihiga district

<table>
<thead>
<tr>
<th>Year</th>
<th>Maize</th>
<th>Bean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3838</td>
<td>1479</td>
</tr>
<tr>
<td>2030</td>
<td>1786</td>
<td>1045</td>
</tr>
<tr>
<td>2050</td>
<td>1672</td>
<td>1052</td>
</tr>
</tbody>
</table>

Spatial variation of crop yield response to climate change in East Africa

Philip K. Thornton\(^a,\)*, Peter G. Jones\(^b\), Gopal Alagarswamy\(^c\), Jeff Andresen\(^c\)

\(^a\)International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya

\(^b\)Waen Associates, Y Waen, Islaw'r Dref, Dolgellau, Gwynedd LL40 1TS Wales, United Kingdom

\(^c\)Department of Geography, Michigan State University, East Lansing, MI 48824, USA

CIMAC

February, 2011
Integrated analysis of climate change

Vihiga district

- Two groups of farmers (with and without livestock)
- Main activities: maize, beans, napier, livestock, sweet potatoes
- Analysis comparing situation with and without climate change
- Evaluate various adaptation strategies
Impact of climate change on farming systems

Seasonal loss (000 KSh/ha) vs. Percentage of farmer population

CIMAC
February, 2011
Integrated analysis of adaptation strategies

- Base

% of farmers negatively affected

0 25 50 75 100
Crop varieties and adaptation

Tuber yield (t/ha)

Sweet potato variety

- NK259L
- NK1081L
- NK103M
- NK102M
- NASPOT 1
- New Kawogo
- NK318L
- Dimbuka
- BND145L
- Magabari

Site 1
Site 2

CIMAC
February, 2011
Drought resistant varieties in Vihiga

Farmers negatively impacted

Adoption of improved variety

% Drought tolerance sweet potato
Discussion

- A large percentage of the farms in Vihiga will be negatively impacted by climate change.
- Introduction of dual purpose sweet potato offsets climate change impacts
- Uncertainties in climate change projections
- The MD-TOA approach offers a rapid integrative analysis for exploring options
Vielen Dank