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Stellingen 
behorende bij het proefschrift van Angelique Lamour, 

Quantification of fungal growth: models, experiments, and observations, 
Wageningen Universiteit, 12 april 2002. 

Een gedetailleerde modellering van koolstof- en stikstofstromen tijdens de afbraak van 
substraat door schimmels leidt tot een gecompliceerd model, maar kan resultaten geven 
met een heldere, biologische interpretatie (dit proefschrift). 

2. Rhizomorfen van Armillaria lutea vormen netwerken om de persistentie te vergroten (dit 
proefschrift). 

3. There is nothing so practical as a good theory (Emanuel Kant, 1724-1804). 

4. Het is jammer dat muizen niet graag zwemmen en niet kunnen fietsen: 
Elke dag een stuk hardlopen zorgt ervoor dat muizen slimmer worden doordat ze meer 
nieuwe hersencellen aanmaken dan niet-rennende soortgenoten (Proceedings of the 
National Academy of Sciences, 9 november 1999). Aangezien menselijke hersenen ook 
voortdurend nieuwe cellen aanmaken, wijst dit erop dat hardlopende promovend(ae)(i) 
de kans op het succesvol afronden van hun proefschrift vergroten. Het zeer voor de 
hand liggende gunstige effekt van triathlon kan door de sportvoorkeur van muizen 
helaas niet met muizen als proefdier aangetoond worden. 

5. Vele promovend(ae)(i) vertonen vergelijking met kabouter Piggelmee (editie Van het 
tovervisje, uitgegeven door Van Nelle): ze willen steeds meer bereiken met hun 
promotie-onderzoek zonder tevreden te zijn met wat ze hebben en te streven naar geluk. 

6. Het huwelijk van Z.K.H. Prins Willem-Alexander en Maxima is niet het huwelijk van het 
jaar. 

7. This tree* is particularly well-known for its bark: 

(*Graph theory says a tree is a connected graph with only one path between each pair of vertices.) 

8. Zonder liefde voor het vak was dit proefschrift van Lamour niet tot stand gekomen. 
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Abstract 

This thesis is concerned with the growth of microscopic mycelial fungi (Section I), and that of 

macroscopic fungi, which form specialised hyphal structures such as rhizomorphs (Section 

II). A growth model is developed in Section I in relation to soil organic matter decomposition, 

dealing with detailed dynamics of carbon and nitrogen. Substrate with a certain 

carbon:nitrogen ratio is supplied at a constant rate, broken down and then taken up by fungal 

mycelium. The nutrients are first stored internally in metabolic pools and then incorporated 

into structural fungal biomass. Analysis of the overall-steady states of the variables (implicitly 

from a cubic equation) showed that the conditions for existence had a clear biological 

interpretation. The 'energy' (in terms of carbon) invested in breakdown of substrate should be 

less than the 'energy' resulting from breakdown of substrate, leading to a positive carbon 

balance. For growth the 'energy' necessary for production of structural fungal biomass and 

for maintenance should be less than this positive carbon balance in the situation where all 

substrate is colonised. Under the assumption that nutrient dynamics are much faster than the 

dynamics of fungal biomass and substrate, a quasi-steady analysis was performed. From the 

resulting simplified model an explicit fungal invasion criterion was derived, which was not 

possible in the analysis of the original fungal growth model. The fungal invasion criterion 

takes two forms: one for systems where carbon is limiting, another for systems where 

nitrogen is limiting. For cases where only carbon is limiting, nitrogen dynamics were excluded 

from the model, and this further simplification resulted in a model that was fitted to data on 

growth of the soil-borne plant pathogen Rhizoctonia solani. Fungal growth and colonisation 

of discrete nutrient sites in Petri plates were assessed microscopically for two carbon 

concentrations of the substrate. Colonisation was faster at the higher carbon concentration. 

The model predicted a lower asymptote for non-colonised substrate and this value was 

estimated from the data by non-linear regression for each carbon concentration. A key 

composite parameter, the positive carbon balance per carbon unit of colonised substrate, 

was lower for the higher carbon concentration. The carbon decomposition rate was 

estimated by least squares minimisation, after correction for a lag phase expected after 

robust handling of the inoculated fungus. The delay in subsequent fungal growth after 

inoculation was extended when there was less carbon available for physical recovery and 

physiological adaptation to the new environment. The simplified mean-field model with 

parameters estimated as described above produced a good fit to the data. 



In Section II quantitative studies on the epidemiology of Armillaria root rot are reviewed. This 

fungus is a serious disease in many forests and horticultural tree crops world-wide, and 

consequently there is much interest in options for avoiding or restricting the spread of 

disease through growth of the specialised rhizomorphs in soil. Two rhizomorph networks of A. 

lutea growing through a natural soil were observed over areas of 25 m2 in Pinus nigra and 

Picea abies tree plantations. Both rhizomorph systems had numerous branches and 

anastomoses resulting in cyclic paths, i.e. regions of the system that start and end at the 

same point. Each rhizomorph network exhibited both exploitative and explorative 

characteristics within its overall network structure. One of the observed rhizomorph networks 

of A. lutea was restricted to the cyclic paths only, and the resulting graph was drawn in the 

plane. The plane graph consisted of 169 rhizomorphs, termed edges, and 107 rhizomorph 

nodes, termed vertices. The connectivity of the rhizomorph network was explored by 

focusing on each bridge, i.e. an edge whose removal disconnects the graph into two 

components. In only two instances was a nutrient source connected to the cycles, and 

disruption of these two connecting edges would remove the whole network from the sources. 

A shortest path from a given vertex to a nutrient source was defined in terms of number of 

edges, and also in terms of length (m). The length of the edges enclosing the faces, i.e. two-

dimensional regions defined by the edges in the plane drawing, showed that the fungus 

exhibited both exploitative and explorative growth, and we speculate about the underlying 

reasons for these foraging strategies. The introduction of graph-theoretic concepts to fungal 

growth might lead to an improved ecological understanding of fungal networks in general, 

provided that relevant biological interpretations can be made. 
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Chapter 1 

Introduction 

Growth of soil-borne fungi is poorly understood, largely because non-destructive observations 

on hyphae in natural soil are difficult to make. In simplified laboratory systems, patterns of 

growth have been observed and analysed (Gilligan & Bailey, 1997; Bolton & Boddy, 1993), but 

the soil microbial system is complex in terms of number and diversity of organisms, and their 

interactions (Richards, 1987). Consequently, there are few insights into the growth dynamics of 

plant pathogens, hyperparasites, and mycorrhizal fungi. Hyphal extension in soil is a means of 

dispersal for many fungi. These hyphae serve as unique systems for nutrient redistribution to 

explorative parts of the system after successful colonisation of new sites (Dighton, 1997). 

The research presented in this thesis is intended to provide more insight into the allocation of 

resources by a growing fungus in relation to the availability of substrate (Dighton, 1997; 

Richards, 1987). There are several alternative or complementary ways for fungi to allocate 

resources. Although some fungi, for example the yeast Saccharomyces cerevisiae, do not form 

hyphae, most other fungi form microscopic mycelial networks, which results in both an important 

mechanism for active dispersal and a means of obtaining and allocating food (Mihail et al., 1995; 

Bending & Read, 1995). A further elaboration for some fungal species, for example Armillaria 

spp., is the aggregation of hyphal strands into specialised macroscopic structures. The 

shoestring-like rhizomorphs are 1-3 mm in diameter with a reddish brown to black outer cortex 



layer (Cairney et al., 1988), and persist over centuries if there are sufficient nutrient sources for 

absorption (Rizzo et al., 1992). These two contrasting systems are dealt with in Section I and II 

respectively, using both modelling and experimental/observational approaches to differing 

degrees. Section I deals with the fine mycelial hyphae of microscopic fungi. In this section, 

fungal growth models are developed to quantify the dynamics of the fungal biomass in terms of 

availability and utilisation of carbon and nitrogen. Section II deals with macroscopic rhizomorphs 

of the fungus Armillaria, and focuses on direct observations of the network structure, and 

quantification by means of graph-theoretical concepts (Wilson, 1979). 

In Section I, mathematical modelling is presented as a useful complement to experimental 

research, since it helps to focus attention on the fundamental properties of the system and 

enables predictions to be made under a wide range of conditions (Bull & Trinci, 1977; Prosser, 

1979; Righelato, 1979). Growth models should be based on reasonable biological assumptions 

regarding growth mechanisms and generate predictions that can be tested experimentally, 

however, difficulties on hyphal observations in natural soil occur. In Chapter 2, a fungal growth 

model is introduced in relation to soil organic matter decomposition, along lines previously 

described (Paustian & Schnurer, 1987a&b), but with detailed attention to carbon and nitrogen 

dynamics. The model describes the colonisation and decomposition of substrate, subsequent 

uptake of nutrients, and incorporation into fungal biomass. The overall-steady states of the 

variables are obtained by standard mathematical procedures, and the conditions for existence of 

the steady states have a clear biological interpretation. In Chapter 3, this fungal growth model is 

simplified by assuming that the nutrient dynamics are much faster than the dynamics of fungal 

growth and substrate, implying that the system will reach a quasi-steady state relatively quickly. 

A quasi-steady state approximation (Stiefenhofer, 1998) allows the derivation of a fungal 

invasion criterion, which was not possible for the original model. Importantly, the invasion 

criterion takes two forms: one for systems where carbon is limiting, another for systems where 

nitrogen is limiting. Carbon sources are the primary object of competition in soil, and competition 

for nitrogen may occur in substrates of a high carbon : nitrogen ratio such as woody plant 

residues (Lockwood, 1981; Lockwood & Filonow, 1981). In Chapter 4 it is assumed that only 

carbon is limiting fungal growth, and nitrogen dynamics are excluded from the model. The 

resulting model is then fitted to data on growth of the soil-borne plant pathogen Rhizoctonia 

solani (Sneh et al., 1996), obtained using a model system similar to that described by Bailey et 

al. (2000). The model produces a good fit to these experimental data. 



In Section II, quantification tools other than mathematical modelling are presented. The 

quantitative epidemiology of the macrofungus Armillaria spp. is reviewed in Chapter 5. Armillaria 

root rot is a serious disease in many forests and horticultural tree crops world-wide (Morrison, 

1976), and many Armillaria species spread largely through rhizomorph growth in soil. 

Consequently, there is much interest in determining how different silvicultural practices influence 

disease incidence (Vollbrecht & Agestam, 1995) and options for avoiding or restricting the 

spread of the disease (Van der Kamp, 1995). A necessary condition for better management of 

Armillaria root rot is an improved understanding of the ecological significance of the extended 

rhizomorph networks that arise from spread (Fox, 2000). Two maps of rhizomorph networks of 

Armillaria lutea, growing in soil over an area of 25 m2 of a tree plantation, are presented and 

analysed from an ecological perspective in Chapter 6. Both networks had numerous branches 

and anastomoses resulting in cyclic paths, i.e. regions of the system that start and end at the 

same point. Network characteristics like total rhizomorph length, number of cyclic paths, fractal 

dimension, etc. are determined, and in Chapter 7 other possible applications of graph-theoretic 

concepts (Wilson, 1979) are explored. In particular both exploitative and explorative foraging 

strategies (Ritz & Crawford, 1990) of Armillaria are apparent, and we speculate about the 

underlying reasons and interpretations for these. The introduction of graph-theoretic properties 

to fungal growth may lead to an improved ecological understanding of fungal networks in 

general, when relevant biological interpretations can be drawn. Finally, the main conclusions are 

given in Chapter 8. 



Section 



Chapter 2 

Modelling the growth of soil-borne fungi 

in response to carbon and nitrogen 
LAMOUR, A., VAN DEN BOSCH, F., TERMORSHUIZEN, A.J. & JEGER, M.J. 2001 

IMA J. Math. Appl. Med. Biol. 17, 329-346 

Abstract 

Growth of soil-borne fungi is poorly described and understood, largely because non

destructive observations on hyphae in soil are difficult to make. Mathematical modelling can 

help in the understanding of fungal growth. Except for a model by Paustian & Schnurer 

(1987a), fungal growth models do not consider carbon and nitrogen contents of the supplied 

substrate, although these nutrients have considerable effects on hyphal extension in soil. We 

introduce a fungal growth model in relation to soil organic matter decomposition dealing with 

the detailed dynamics of carbon and nitrogen. Substrate with a certain carbon:nitrogen ratio 

is supplied at a constant rate, broken down and then taken up by fungal mycelium. The 

nutrients are first stored internally in metabolic pools and then incorporated into structural 

fungal biomass. Standard mathematical procedures were used to obtain overall-steady states 

of the variables (implicitly from a cubic equation) and the conditions for existence. Numerical 

computations for a wide range of parameter combinations show that at most one solution for 

the steady state is biologically meaningful, specified by the conditions for existence. These 

conditions specify a constraint, namely that the 'energy' (in terms of carbon) invested in 

breakdown of substrate should be less than the 'energy' resulting from breakdown of 

substrate, leading to a positive carbon balance. The biological interpretation of the conditions 

for existence is that for growth the 'energy' necessary for production of structural fungal 

biomass and for maintenance should be less than the mentioned positive carbon balance in 

the situation where all substrate is colonised. In summary, the analysis of this complicated 

fungal growth model gave results with a clear biological interpretation. 
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1. Introduction 

An important mechanism for active dispersal of soil-borne fungi is the formation of hyphae. A 

prerequisite for growth is the availability of substrate. In nature, dead plant parts are returned 

to the soil and can serve as a substrate for microorganisms. The activities of soil fauna, 

bacteria, and fungi degrade the complex organic components, using carbon for energy and 

mineral elements for biomass production. Colonisation of substrate by a given fungal species 

is dictated by the ability to utilise the resource (often referred to as the substrate quality), the 

time of arrival at the resource, and the ability to compete against other fungal species with 

similar physiological competence. Decomposition arises from enzyme activity. The types of 

enzymes required depend on the chemical constituents of the substrate. Fungal species 

differ in the range of enzymes they are capable of producing, resulting in a change in 

species composition as different plant substrates undergo a cascade of decomposition 

processes. Following decomposition, nutrients are taken up and incorporated into fungal 

biomass (Dighton, 1997). 

Carbohydrates are among the most readily available sources of carbon for fungi. 

Monosaccharides are widely utilised, but polyhydric alcohols are also good carbon sources. 

As a source for nitrogen, ammonium (NH4*) is preferred, but also nitrate (N03") can be 

utilised by many fungi. Organic nitrogen compounds are decomposed by some fungi to 

produce ammonia (Cooke & Whipps, 1993). Phosphorus is usually taken up in inorganic 

form. Most of this phosphate is of mineral origin but some may be derived from enzymatic 

breakdown of soil organic matter. Sulphur is provided by mineralization of soil organic 

matter, producing sulphate (S04
2"). Microbes require other mineral elements only in very low 

concentrations, mainly as activators of various enzymes (Richards, 1987). 

Growth of soil-borne fungi is poorly understood, largely because non-destructive 

observations on hyphae in soil are difficult to make. However, in laboratory culture outgrowth 

patterns have been observed, e.g. on mycelial cord systems of Phanerochaete velutina and 

Hypholoma fasciculare extending into soil from woody resource bases (Bolton & Boddy, 

1993), on Armillaria mycelia and rhizomorphs (Mihail et al., 1995), or on Rhizoctonia solani 

(Gilligan & Bailey, 1997). The soil microbial ecosystem is very complex in terms of the 

number and diversity of organisms and their interactions. Mathematical modelling is a useful 

complement to experimental research, since it helps to focus attention on the fundamental 

properties of the system and enables predictions to be made under a wide range of 

conditions. Mathematical modelling has already become a recognised tool in mycology, 



aiding to some extent in the understanding of fungal growth in culture (for reviews see Bull & 

Trinci, 1977; Prosser, 1979; Righelato, 1979). 

Growth models should be based on biological assumptions regarding growth mechanisms 

and generate predictions, which can be tested experimentally. For example, Prosser & Trinci 

(1979) developed a mechanistic model for hyphal growth and branching and compared the 

predictions from the model with experimentally observed growth kinetics of mycelia of 

Geotrichum candidum and Aspergillus nidulans. Other fungal growth models include also the 

dynamics of a substrate source (e.g. Edelstein & Segel, 1983; Molin et al., 1993; Regalado 

et al., 1996; Davidson et al., 1997). Paustian & Schnurer (1987a&b) model fungal growth in 

response to the carbonmitrogen ratio of the supplied substrate, in the context of 

decomposition processes in soil. Carbon and nitrogen sources have considerable effects on 

hyphal extension in soil (e.g. Stack et al., 1987). We introduce a fungal growth model dealing 

with the detailed dynamics of carbon and nitrogen for fungi with different growth potentials. 

The model describes a system of organic matter decomposition in soil by saprophytic fungi 

or those with a saprophytic phase. In this paper we do not direct the model to a particular 

biological system, but point to its general form. We examine the qualitative behaviour of the 

model, e.g. criteria determining growth potential, persistence and steady state values for the 

variables, in relation to substrate supply. We make a simple assumption that there is a 

continuous and constant supply of substrate and obtain qualitative and numerical results that 

we interpret biologically. Another option would be to examine the impact of a sinusoidal 

substrate input, e.g. representing fluctuations in leaf litter. In subsequent papers we examine 

how fungal growth may track substrate supply (either as a single or periodic supply) and, by 

making simplifying assumptions on the relative time-scales of carbon and nitrogen compared 

with growth dynamics, show how the model can be linked to experimental observations. 

Fungal growth involves a spatial process, namely the extension of fungal hyphae. Edelstein 

(1982) described growth and branching in mycelial fungi and derived a spatial mathematical 

model (Edelstein & Segel, 1983). Spatial heterogeneity is important in terms of the 

persistence or maintenance of a biological system. However, the model as presented does 

not focus on the spatial nature of fungal growth but on detailed substrate dynamics and 

resulting changes in fungal biomass as a mean field approximation. 
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2. Model description 

The fungal growth model describes the colonisation and decomposition of substrate, 

subsequent uptake of nutrients, and incorporation into fungal biomass. The symbol S (Table 

1) indicates the substrate source that is encountered by the fungus by outgrowth of 

mycelium (Fig. 1). Besides supply (e.g. dead organic matter) and removal (e.g. by other 

decomposers, leaching, or harvesting), fungal colonisation determines the dynamics of 

substrate S. Colonised substrate (I) is decomposed by exoenzymes to carbon and nitrogen 

in readily available form, involving an energetic cost. Many fungal species secrete 

exoenzymes to support decomposition, for example manganese-dependent peroxidase, 

lignin peroxidase or glyoxal oxidase (Archer & Wood, 1995; Datta et al., 1991). Fungi need 

mostly carbon and nitrogen to grow, therefore we concentrate on the dynamics of these 

nutrients only. Thus, as a result of substrate decomposition, carbon and nitrogen are formed 

externally (and therefore indicated by an asterisk: C*, N*). Subsequently, carbon and 

nitrogen are taken up by the fungus and stored internally in metabolic pools. Uptake is by 

means of osmosis, therefore without an energetic cost. The nutrients in the metabolic pools 

can be used for growth of structural fungal biomass (B). Fungal biomass can be considered 

as two components, cytoplasm and cell walls, differing in their nutrient demands. Cytoplasm 

contains high amounts of carbon and nitrogen, but the cell wall is composed primarily of 

polysaccharides (Peberdy, 1990), where the nitrogen concentration is only 1-2% (Paustian & 

Schnurer, 1987a). A constant carbon:nitrogen ratio is assumed for cell walls (Burnett, 1979) 

by considering storage products as a separate component; the same is true for the 

cytoplasm. Therefore, we consider biomass as one variable. Experimentally, it is difficult to 

distinguish between the cytoplasmic and cell wall components. 

The carbon and nitrogen that are present externally (C* and N*) can also be partially 

assimilated by competing bacteria and other fungi. Therefore at the C* and N* level an 

outflow termed loss is indicated. For nitrogen an inflow also exists due to mineralization. As a 

result of the rapid turnover of soil organic matter by microorganisms, nutrient elements are 

released into soil solution as simple inorganic compounds, a process termed mineralization 

(Dighton, 1997). The energetic cost involved in maintenance is modelled as carbon costs out 

of the metabolic carbon pool. The same holds for the energetic cost involved in substrate 

decomposition. The carbon and nitrogen metabolic pools both have an outflow due to 

leakage out of the mycelium. The balance between uptake and leakage depends on the 

degree of insulation, i.e. the resistance to deformation and penetration, of the hyphal 

boundaries which must always be partly deformable or penetrable if the system is not to 
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stagnate (Rayner et al., 1994). The system is described by seven state variables (Table 1). 

The dimensions are expressed in arbitrary carbon or nitrogen units per unit volume of soil. 

These units could be moles or units of biomass (for example ug) . 

Table 1 . Model variables with dimensions. 

State dimension* 
S substrate available to be colonised by the fungus WCHjnits 

I colonised substrate Wc.units 

C* external carbon WCHjnits 

N* external nitrogen WN.uni,s 

C carbon in the metabolic carbon pool /Vc_units 

N nitrogen in the metabolic nitrogen pool WN.units 

_B structural fungal biomass /Vc.units 

"where N = number of 

Table 2. Parameters, dimensions, default values, and ranges for numerical computations. 

Parameter 

a substrate supply per t ime unit 
p substrate removal rate 
a substrate colonisation probability per 

carbon unit biomass 
x fungal growth rate per C/B per N/B 
(3 substrate decomposition rate 
vc . C* loss rate 
vN. N* loss rate 
k, C* uptake rate 
k2 C leakage rate 
k3 N* uptake rate 
k4 N leakage rate 
\\i carbon:nitrogen ratio of supplied substrate 
\ extra mineralization per t ime unit 
co maintenance rate of structural fungal biomass 
A carbon units invested in decomposition per 

carbon unit substrate 
co carbon:nitrogen ratio of structural fungal biomass 
|i mortality rate of structural fungal biomass 

dimension* 

Wc-units I 

T1 

('»C-units{B}) 

see @ 

r 
T1 

T-1 

T-1 

r 
r 
T1 

'»C-units( ' ' "N-uni ls) 

r 

'*C-units{C-pool)('»C-units{l)) 

""C-units C^N-units) 

T 1 

value (range) 

106(1-108) 
0 .05(102 -105 ) 

0.1 (10-MO2) 
10"6 

0.15 
0.1 (0-1) 
0.1 
0.1 (10"3-108) 
0.1 
0.1 
0.1 
9 
103 

0.02(102-104) 

0.1 (0-1) 
10 
0.01 (10-8-102) 

*where N = number of; T = t ime unit (day) 

@ where the dimension of x is T"1 —c""ni ts(B) "C-unitsfB) 

^•C-units{C-pool( ^N-units{N-pool) 
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supply . e r e m o v a l 
——p> o • 

^ maintenance _ . 
•4 •—-5T C-pool 

B 

Figure 1. In the fungal growth model substrate (S) is colonised, colonised substrate (I) is 

externally decomposed to carbon (C*) and nitrogen (NT), subsequently taken up into a 

metabolic carbon (C) and nitrogen (N) pool, and incorporated into structural fungal biomass 

(B). 
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The model structure then takes the form: 
J Q 

— = supply - removal - colonisation [substrate] 

— = colonisation - decomposition [colonised substrate] 

dC* 
= decomposition - loss - uptake + leakage [external carbon] 

dt 
dN* 

= decomposition - loss - uptake + leakage + min eralization [external nitrogen] 
dt 

AC* 
— = uptake - leakage - growth - ma int enance - decomposition [metabolic carbon pool] 
dt 

dN 
— = uptake - leakage - growth [metabolic nitrogen pool] 
dt 

dB 
— = growth - mortality [structural fungal biomass] 
dt 

We now derive expressions for all terms on the right-hand side of these differential 

equations. All model parameters have a biological or physical description (Table 2). Supply 

of substrate is assumed to be a constant amount per time unit, o , whereas removal by e.g. 

other decomposers proceeds at a constant rate, p. Colonisation of substrate is linearly 

related to new growth of biomass, because substrate is encountered by the outgrowth of 

mycelium, where it is assumed that substrate is homogeneously distributed. There are many 

options to model fungal growth, where one of the simplest is it to be linearly proportional to 

-B, i.e. carbon in the metabolic pool divided by structural fungal biomass, and also to ^ , i.e. 

nitrogen in the metabolic pool divided by structural fungal biomass. With x being the 

proportionality constant, fungal growth is then modelled as x^^B, which simplifies to x^f. 

Colonisation of substrate is also linearly related to substrate with proportionality constant a , 

i.e. the substrate colonisation probability per carbon unit biomass, leading to a colonisation 

term ax^-S. Decomposition is assumed to proceed at a constant rate, p, because it is 

assumed that there always is a sufficient amount of fungal biomass (and a sufficient amount 

of exoenzymes) available for decomposition. Colonised substrate is expressed in carbon 

units. Therefore, carbon derived from decomposition is p i , and nitrogen derived from 

decomposition is -Lpi, where \\i is the constant carbon:nitrogen ratio of the incoming 

substrate. Bacteria or other competing microorganisms cause loss of nutrients at rates vc. for 
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carbon and vN. for nitrogen. Uptake and leakage of nutrients by the fungus are linearly 

related to the amount of nutrients in the two metabolic pools, with rates k, and k2 respectively 

for carbon and k3 and k4 respectively for nitrogen. Mineralization is assumed to occur at a 

constant amount per time unit, L,. For growth of structural fungal biomass (B), carbon is 

necessary at an amount T ^ - per time unit. To achieve growth of biomass in terms of 

nitrogen, this quantity is multiplied by | , where <(> is the carbon:nitrogen ratio of the 

structural fungal biomass. Because § refers only to structural biomass and not to storage 

products, this ratio is assumed to be constant. For each unit of fungal biomass a fixed 

amount of energy, in terms of carbon, is necessary per time unit for maintenance, co. 

Decomposition of colonised substrate demands carbon units out of the metabolic carbon 

pool at an amount A per carbon unit colonised substrate, leading to a carbon loss term Apl 

per time unit. This carbon loss term involves energy for production of enzymes. Because 

enzymes contain only little nitrogen, a nitrogen loss term is neglected. A constant mortality 

rate \i of biomass is assumed, where dead biomass is not a qualitatively good substrate 

source. In case substrate supply is large, dead biomass as a substrate source can be 

neglected anyway. The fungal growth model (2.1) can then be written as: 

[substrate] 
dS CN 
_ = CT_pS-ax — S 

d l C N C ftl 

d t = a T - B - S - p l 

dt F c 

2.1 (a). 

2.1 (b). 

2.1 (c). 

2.1 (d). 

2.1 (e). 

2.1 (f). 

2.1 (g). 

where the maintenance rate 

-k,C*+k2C 

dN* l 
^ - = - p i - v N .N* -k 3 N*+k 4 N + i; 

dt y 

— = k , C * - k 2 C - x — -coB-Api 
dt ' 2 B 

— = k,N*-k4N 
dt 3 4 

dB CN _ 
— = T uB 
dt B 

1 CN 
— T 

<|> B 

[colonised substrate] 

[external carbon] 

[external nitrogen] 

[metabolic carbon pool] 

[metabolic nitrogen pool] 

[structural fungal biomass] 

and the decomposition rate : 

co ifC>0 

0 ifC = 0 

A ifC>0 

0 ifC = 0 
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These restrictions avoid that the maintenance or decomposition term in equation 2.1 (e) 

drive variable C negative when C is small relative to B or I. 

3. Qualitative analysis and results 

The model (2.1) was analysed to establish whether steady state values for all variables 

existed. Rates of change of all variables are then zero. The steady state value for substrate, 

S, follows implicitly from the cubic equation a:S
3 +a2S

2 + a3S + a4 = 0 , where a,, a2, a3, 

and a4 are composites of the original parameters (Appendix 1). The three roots of this cubic 

equation are not biologically meaningful if they give negative or complex values. If S is 

biologically meaningful, then the remaining steady state variables are directly related to S: 

3.1(a). f = 2z£§. 
P 

3.1 (ft), c' = M A - 1 ^ + ̂  + c°)(p^-CT) 
ay.vc.S 

3 1 . . ^ . = a fr i ts + (a - pS|a(j)S - y) 

3 1 ( d ) £ {MA(k, + "c-) ~ fci ]S + (k, + vc- fa + to)Ip5 ~ <*) 
ak2iivc.S 

3 1 ^ = afyyk^S + (a- pS\a^kzS - y[vN. + k3 ]) 

avN.§yk4S 

3.1(0. B = t ^ ) 
ajxS 

To have a biological interpretation, all steady state expressions derived from S (3.1) should 

also be larger than zero resulting in a cascade of conditions for existence: 

3.2(a). S > 0 

3.2 (b). S < — , necessary for ? > 0 and B > 0 
P 

1 + — 
3.2 (c). S > , n . with A < 1, necessary for C* > 0 

oc(1 - Aj 

3.2 (d). a ^ S + (a - p§)(a<t>S - y) > 0 , necessary for N* > 0 
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3.2(e). S> 
1 + -

* i 

u k 
with A < — , necessary for C > 0 

K+vc. 

k,+vc. 

3.2 (f). a$\\ik3£,S + (a - pS|a<t>/f3S - y[vN. + k3 ]) > 0 , necessary for N > 0 

Conditions 3.2 (d) and 3.2 (f) can be written as complicated intervals with S written explicitly 

as a root of the cubic equation (Appendix 1), but are difficult to interpret biologically. 

Condition 3.2 (b) can be combined with condition 3.2 (e), which is a sufficient condition for 

3.2 (a) and 3.2 (c), to give: 

CO 
1 + -

3.3. r *, 
a k 

< S < — with A < • 1 

k,+vc. 
-A 

K + vc-

1+-
Clearly, for equation 3.3 to hold requires 

* i 

k,+vc. 
-A 

-, < —, which can be rewritten as: 
P 

3.4. a r *i 
k1+vc. 

--A 
J 

CT -i ® • , • * k, . . co . . , 
— > 1 + — implying A < — (since 1 + — > 0 ] 
P H K + vc H-

We start with the biological interpretation of the constraint A < 
K + vc-

(3.4). The carbon 

formed as a result of decomposition is either taken up by the fungus (k,) or lost due to 

assimilation by other microorganisms (vc.) (Fig. 1). Therefore 
* i + vc. 

is the carbon fraction 

that is taken up by the fungus or, in other words, the number of carbon units resulting from 

decomposition per carbon unit substrate. It is biologically relevant that the number of carbon 

units invested in decomposition per carbon unit substrate (A) should be less than the 

number of carbon units resulting from decomposition per carbon unit substrate (- * i 
• ) • 

'k,+vc. 

The left-hand side of condition 3.4 can be explained as follows. In absence of the fungus the 

steady state value for substrate depends only on substrate supply per time unit (a) and 

substrate removal rate (p), s o — = a - p S , leading to S = —, which gives an upper limit to 
dt p 



17 

S. The left-hand side (3.4) has a biological interpretation, indicating a positive carbon 

k CT 
balance, A, in the case where substrate is at — with colonisation probability a 

K + vc. p 
(per carbon unit biomass). It is evident that the amount of substrate in absence of the 

fungus, —, will never be reached in the presence of the fungus. The first part of the right-
P 

hand side (3.4), the quantity 1, represents the fact that the number of carbon units extracted 

from the metabolic carbon pool, t^jf, is equal to the number of carbon units incorporated 

into structural fungal biomass, t ^ (model 2.2). The second part of the right-hand side is 

—, where co is the number of carbon units necessary out of the metabolic carbon pool for 

maintenance of structural fungal biomass per unit time (per carbon unit biomass). With u 

being the biomass mortality rate, — is the number of carbon units necessary for 

H 

maintenance during the whole life time of a carbon unit biomass (per carbon unit biomass). 

The right-hand side thus represents the number of carbon units necessary for production of 

structural biomass and for maintenance (per carbon unit biomass). From a biological 

viewpoint it is clear that for growth this quantity should be less than the left-hand side, being 

the positive carbon balance in the situation where all substrate is colonised. 

4. Numerical analysis and results 

The fungus can colonise an environment when the parameter values satisfy the existence 

criteria discussed in the previous section. After fungal invasion the system can either 

stabilise at the internal steady state, or periodic fluctuations might arise. An example of the 

first possibility is shown in Fig. 2. To determine whether the internal steady state might loose 

stability, giving rise to a periodic solution, can be calculated using linearised stability 

analysis. These calculations, combined with implicitly defined steady state values (Appendix 

1), result however in a characteristic equation too unwieldy to be of any practical value. Our 

numerical simulations for wide ranges of all parameter values, however, indicate that the 

system always converges to the internal steady state, meaning that no periodic solutions are 

observed. We simulated the system for such a wide variety of parameter values that we feel 

safe to conclude that at least for biological reasonable values the internal steady state is 

always stable. 
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Figure 2. Time plots of structural fungal biomass (B), substrate (S), and colonised substrate 

(I) in (a), and of the nutrients in (b). 

Time plots for default parameter values (Table 2), where appropriate taken from Paustian & 

Schnurer (1987b), show stabilisation of all variables at single point steady states (Fig. 2). 

Substrate is colonised by the fungus, resulting in an increase in fungal biomass (Fig. 2(a)). 

Carbon (both C and C*) stabilises at higher levels than nitrogen (Fig. 2(b)). A time plot of the 

Q 
carbon:nitrogen ratio in the metabolic pools (—) shows stabilisation at a level below the 

N 
constant carbon:nitrogen ratio of the structural biomass § (Fig. 3). Experimentally nutrients 

in the metabolic pools (C, N) cannot be measured separately from nutrients in the structural 

biomass, but the overall carbon:nitrogen ratio of the mycelium can be measured. Carbon 

present in the structural biomass (CQ) is calculated from —— B, and nitrogen present in the 
<|) + 1 
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Figure 3. Time plot of the carbon:nitrogen ratio in the metabolic pools (—, solid line). The 

constant carbon:nitrogen ratio of the structural fungal biomass (<|>) has default value 10 

(dotted line). 

1 CR 
structural biomass ( N R ) is calculated from B, where —— equals <|>. The curve of the 

<t> + 1 Ns 

overall carbonrnitrogen ratio of the mycelium ( —) is almost similar to the — curve (not 
N + NR N 

shown). Numerical output shows that — is slightly higher than — until both curves 
N N + NR 

cross, and slightly lower afterwards. The curves cross where — = —, thus where 
N N + NR 

— = —— = 6. The expression for the steady state carbon:nitrogen ratio - — ^ - is given in 
N NB

 a N + N R 

Appendix 2. 

The steady state value for structural fungal biomass (3.1 (f)) shows an inverse relationship 

with S, indicating a high sensitivity to the efficiency of substrate utilisation (Fig. 4(a)). At high 

B there is little non-colonised substrate remaining and vice versa. Curves are also shown 

for biomass mortality rates 10 times higher or lower than the default value 0.01, indicating 

higher B at lower mortality rates. The higher the steady state fraction of colonised substrate, 

l/(I + SJ, the higher the steady state value for fungal biomass (Fig. 4(b)). 
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Figure 4. Steady state of structural fungal biomass (B) versus steady state of substrate (S) 

for biomass mortality rates of 0.1, 0.01 and 0.001 d"1 in (a), and versus steady state fraction 

of colonised substrate ( l / ( i + SJ) in (b). 

The three steady state solutions for substrate, resulting from the cubic equation (Appendix 1) 

were calculated for the default parameter values (used in Fig. 2) and with varying values of 

those parameters that appear in 3.3 (see range in Table 2). It was then checked whether 

each of these solutions is biologically meaningful with respect to the conditions for existence 

of the steady state variables (3.2). For all cases investigated (see Table 2 and Figs. 5&6) the 

result of this analysis was that of the three solutions for S at most one solution had 

biological interpretation. The biologically meaningful solution for S is plotted versus various 

parameters to study the sensitivity of S to parameter values. Plots involving the parameters 

of the constraint of condition 3.3 (A, k„ vc.) show a lower, asymptotic boundary and an 

upper, strict boundary for S (Fig. 5). 
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Figure 5. Biologically meaningful solution for the steady state of substrate (S, solid line) 

versus carbon units invested in decomposition per carbon unit substrate (A) in (a), versus 

carbon uptake rate (k,) in (b), and versus carbon loss rate (vc.) in (c). Fig. 5(a) shows also 

the corresponding steady state of structural fungal biomass (B). The boundaries (dotted 

lines) are formed by conditions for existence of the steady state variables (3.2 (b) and (e)). 
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Figure 6. Biologically meaningful solution for the steady state of substrate (S , solid line) 

versus co, \i, a, a , and p in Fig. 6 (a) to (e) respectively. For parameter descriptions see 

Table 2. The boundaries (dotted lines) are formed by conditions for existence of the steady 

state variables (3.2 (b) and (e)). 
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These two boundaries are set by the left-hand side and right-hand side of condition 3.3. The 

lower boundaries of the intervals specified by condition 3.2 (d) and 3.2 (f) are ensured by 

condition 3.2 (e) while the upper boundaries are ensured by condition 3.2 (b). A boundary for 

A is given by the constraint of condition 3.3, A < — (Fig. 5(a)). The parameters 

involved in this constraint do not appear in condition 3.2 (d) or 3.2 (f). Rewriting the 

A vr. K 0 - A) 
constraint as K, > -,—^ or vc. < gives the boundaries for k, (Fig. 5(b)) and vc. 

(1-A) A 

(Fig. 5(c)). Plotting the biologically meaningful solution for S versus the remaining 

parameters of condition 3.3 (co, \i, a, o , and p) shows also a lower and upper boundary 

for S (Fig. 6), again set by the left-hand side and right-hand side of condition 3.3. All curves 

do not cross the boundaries indicated, however, some are very close to them. The curves 

indicate the cases where one biologically meaningful solution for the steady state was found. 

Beyond the boundaries no biologically meaningful solution exists (that is for co>8000, 

H< 2.5*10"8, a < 3.75*10"7, a < 3.75, and p > 13333). 

5. Discussion and conclusions 

In this paper we studied fungal growth as a result of substrate decomposition. The model 

includes detailed dynamics of carbon and nitrogen, whereas other models proposed thus far 

do not. Steady states of the model were analysed qualitatively and by numerical simulations. 

In the case where a continuous substrate input is changed into a batch input, the amount of 

substrate approaches zero and the fungus does not persist. Then, the system does not 

stabilise at an internal steady state, as explained by Garrett (1946). Insofar as the final 

product of organic matter decomposition in soil, namely humus, is a more or less permanent 

constituent of the soil ecosystem, the theoretical zero end-point will never be reached. 

The model presented assumes a constant carbon:nitrogen ratio for structural fungal 

biomass, because the metabolic pools are considered as separate components. Paustian & 

Schnurer (1987a) also assumed constant carbon:nitrogen ratios for cytoplasm and cell walls. 

The overall carbon:nitrogen ratio for the mycelium may vary greatly depending on the degree 

of metabolic nutrient accumulation (Fig. 3, where — is almost similar to —). Nicolardot 
N + NB N 

et al. (1989) found that the carbon:nitrogen ratio for one species (Aspergillus flavus) could 

vary from 5.8 to 11.9. A constant carbon:nitrogen ratio is also assumed for substrate (S), 
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implying that the substrate is of a constant quality. This is a limitation of the model, since the 

carbomnitrogen ratio of substrate should decrease due to continuous loss of carbon and 

conservation of the limiting nitrogen in an immobilised form (Swift et al., 1979). Fungal 

colonisation of dead fern litter resulted in a decrease in carbon:nitrogen ratio from some 

200:1 to 30:1, as a result of the rate of loss of cellulose and lignin (Frankland, 1994). 

Changes in available resources are related to succession of fungal species. Sugar is first 

consumed by, for example, mucoraceous fungi and bacteria, followed by cellulose by many 

ascomycetes and basidiomycetes, and lignin by predominantly basidiomycetes. In the model 

presented here we do not see this phenomenon, since we have a constant carbon:nitrogen 

ratio, which is, as already mentioned, a limitation of the model. Use of substrate by other 

microorganisms is included implicitly by using a substrate removal term, and loss terms of 

external carbon and nitrogen (Fig. 1). 

Where the carbon:nutrient ratio is very high, as in wood, the model of Swift et al. (1979) 

suggests that during initial stages of decomposition the carbohydrate component is used as 

an energy source until the fungal resource carbon:nutrient ratio approaches that of the 

fungus. Wood-decay fungi are able not only to extract nitrogen from wood but also to 

concentrate it, by which is meant that the overall carbon:nitrogen ratio in mycelium is much 

lower than in wood. Considerable immobilisation of nutrients is suggested by Stark (1972), 

who showed that hyphae had 193 to 272% greater nitrogen content and 104 to 223% 

greater phosphorus content than the pine needle litter on which they were found. In the 

default parameter set used to analyse the model presented, the fungus is assumed to 

colonise substrate having approximately the same carbon:nitrogen ratio as the structural 

fungal biomass (y=9, <|> =10). Simulations showed that a larger difference (\|/=90, <|>=10) 

also resulted in a steady state (lower value for structural fungal biomass, higher value for 

substrate and almost the same value for colonised substrate). 

Qualitative analysis of the model shows three solutions for the steady state. However, 

numerical computations for a wide range of parameter combinations (Table 2) show that 

either one or no solution for the steady state is biologically meaningful, specified by 

conditions for existence with biological interpretation (section 3). We have been unable to 

show that two or three biologically meaningful solutions exist or to prove that this is 

impossible. The biologically meaningful solution for the steady state of substrate (S) was 

plotted versus various parameters (Figs. 5&6). If many carbon units are invested in 

decomposition per carbon unit substrate (A), much carbon is extracted from the C-pool and 
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therefore not available for incorporation into structural fungal biomass, where less biomass 

results in more non-colonised substrate S (Fig. 5(a)). At low carbon uptake rates (Fig. 5(b)) 

or high carbon loss rates (Fig. 5(c)), less carbon enters the C-pool, again resulting in a high 

value for S. As A approximates the boundary specified by the constraint in equation 3.3, 

the steady state of structural fungal biomass (B) becomes so small that substrate can not 

be colonised. The same holds for the carbon uptake and loss rate. A high maintenance rate 

of structural fungal biomass implies that much carbon is extracted from the C-pool and 

therefore not available for incorporation into structural fungal biomass, where less biomass 

results in more non-colonised substrate S (Fig. 6(a)). In case this maintenance rate is too 

high, the fungus cannot persist. A high mortality rate of structural fungal biomass gives a low 

value for S (Fig. 6(b)). This is also shown in Fig. 4(a) where for a given value for B, 

increasing the mortality rate reduces the steady state value for substrate. On the other hand, 

for a given value for S, increasing the mortality rate reduces the steady state value for 

structural fungal biomass, because the mortality rate appears in the steady state expression 

for B (3.1.(f)). A high substrate colonisation probability a gives more colonised substrate, 

and therefore less non-colonised substrate S (Fig. 6(c)). If S is too small, the fungus cannot 

colonise enough substrate to persist. A higher substrate supply per time unit (Fig. 6(d)) or a 

lower substrate removal rate (Fig. 6(e)) leads to more substrate in the steady state. If you 

supply too little or remove too much, the fungus can no longer persist. 

Paustian and Schnurer (1987a) included translocation of cytoplasm in their model. 

Translocation is the movement of cytoplasm from existing hyphae into the zone of new 

growth, creating evacuated hyphal lengths. Hyphal outgrowth is then possible without a net 

increase in cytoplasm, where limiting growth resources are preferentially allocated to cell 

wall synthesis. Jennings (1975) reported that in most fungi hyphal extension is associated 

with the translocation of cytoplasmic constituents to apical regions. Furthermore, fungi may 

be highly differentiated with regions of actively-growing hyphae and degenerate or autolyzing 

hyphae existing within the same mycelium (Ricciardi et al., 1974). Although the phenomenon 

of translocation can be included in the model presented, we chose to keep the model simple 

to enable a detailed study of the dynamics of carbon and nitrogen. 

One option to validate the model presented is to supply substrate with a known 

carbon:nitrogen ratio to a fungus with well-described growth characteristics such as 
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maintenance rate and mortality rate. Several parameters can effectively be set to zero, for 

example substrate removal rate, loss rates of carbon and nitrogen, by excluding competition 

and extra mineralization per time unit. The nutrients in the structural fungal biomass ( C R , 

NR) and the pools (C, B) can in principle be measured. For a known carbon:nitrogen ratio of 

structural fungal biomass, time plots for C and N can be produced and compared with 

numerical simulations. The unknown parameters remaining can then be optimised by 

appropriate procedures to produce the best fit. In conclusion we can say that this 

complicated fungal growth model gave qualitative results with a clear biological 

interpretation, and which in simplified form can be evaluated with experimental data. 

Appendix 1. The coefficients of the cubic equation in which the steady state variable 

substrate (S ) is expressed implicitly. 

a,= a2u/c3pT[A(^ + vc.)-ki]l[yk2k4vc.vN.] 

a2= 

fc4\wk£[A(k, + vc.)-k,] + a^/c3a[A(/c, +vc.)-k,]+ 1 , , 
-ax< r , v N r , v \ n r'W9k2k4vc.vN.\ 

[p[Ai)/u(/c3 + vN. \k, +vc.)- vN. y^u - k3 [ftk, + vc. Xu + co) + \|//r,nj J J 

a3= 

a$\\ik3xE,(k, + vc. Xu + co) -
-• axa[Ai|/u.(vN. + k3\k, +vc.)- vN.yk:n - k3{ty{k, + vc.Xu + co) + yk,\i}]- -/[^k2kAvc.vN.] 

v|/p[vN. fok2k4vc. - T(/C, + vc. Xu + co)} - k3x(k, + vc. Xu + co)] 

a4= CT{k3T(k1+vc.Xu + co)-vN.[<t>k2k4vc.-T(k,+vc.Xu + co)]}/[<t)k2k4vc.vN.] 

C + CR 
Appendix 2. The expression for the steady state carbon:nitrogen ratio - — s - 2 - , where C 

N + NR 

and N refer to carbon and nitrogen in the metabolic pools, and CB and NB refer to carbon 

and nitrogen in the structural fungal biomass. 

iy<h;/c4{auS(<)) + l)[A(ft1 +vc.)-k,] + ̂ [(k, +vc.)(}i + a)-k2vc.]+(k, + i/c.Xu + co)}(pS-a) 
k2vc. {av+\ik£Sfo +1) + (a - pS) [acbu/CjS^ +1)+ y{vN. [<(>(/c4 - u)- u ] - u/c3(<|> +1))]} 
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Abstract 

In Chapter 2, we proposed a fungal growth model (Lamour ef a/., 2001), describing the 

colonization and decomposition of substrate, subsequent uptake of nutrients, and 

incorporation into fungal biomass, and performed an overall-steady state analysis. In this 

paper we assume that where nutrient dynamics are much faster than the dynamics of fungal 

biomass and substrate, the system will reach a quasi-steady state relatively quickly. We 

show how the quasi-steady state approximation is a simplification of the full fungal growth 

model. We then derive an explicit fungal invasion criterion, which was not possible for the full 

model, and characterise parameter domains for invasion and extinction. Importantly, the 

fungal invasion criterion takes two forms: one for systems where carbon is limiting, another 

for systems where nitrogen is limiting. We focus attention on what happens in the short term 

immediately following the introduction of a fungus to a fungal-free system by analysing the 

stability of the trivial steady state, and then check numerically whether the fungus is able to 

persist. The derived invasion criterion was found to be valid also for the full model. 

Knowledge of the factors that determine invasion is essential to an understanding of fungal 

dynamics. The simplified model allows the invasion criterion to be tested with experimental 

data. 
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1. Introduction 

In Chapter 2 of this thesis, we proposed a fungal growth model with detailed consideration of 

carbon and nitrogen dynamics arising from colonization of a substrate source (Lamour et al., 

2001). The model describes the colonization and decomposition of substrate, subsequent 

uptake of carbon and nitrogen into internal metabolic pools, and incorporation into fungal 

biomass. An overall-steady state analysis was performed for the model with the conditions 

for existence of the steady state having a clear biological interpretation. However, it was not 

possible to derive an explicit invasion criterion for the fungus to establish in the described 

system. 

In the overall-steady state analysis no a priori assumptions were made with respect to 

possibly differing rates for the various processes involved. Indeed for the default parameter 

set used in analysing the overall-steady state, these were of the same order of magnitude. 

However, the process of uptake of nutrients through the fungal membrane may proceed 

much faster than the process of growth of fungal biomass. Thus, in this paper we consider 

the possible outcomes if we assume that processes proceed at strongly differing rates. In 

particular the relatively fast nutrient dynamics will reach equilibrium, referred to as quasi-

steady state (QSS), in a relatively short period of time as compared to the relatively slow 

dynamics of fungal biomass and substrate. 

In plant growth models the assumption of fast nutrient dynamics compared to crop growth is 

common, and this approach has been applied successfully (Thornley & Johnson, 1990). In 

fungal growth, we are not aware of reports in the literature of direct measurements of rates 

related with substrate decomposition, acquisition (the crossing of extracellularly decomposed 

substrates through the cell wall and the plasmalemma), and usage for growth (notably the 

production of new cell walls). However, from the high energy required for decomposition of 

some substrates such as cellulose and lignin, and the high complexity of chemical reaction 

cascades involved in both substrate decomposition and structural growth, we deduce that 

these processes occur more slowly, per unit of carbon or nitrogen, than the relatively simple 

processes of low molecular weight compounds entering the fungal cell (Cooke & Whipps, 

1993). Therefore, the assumption of fast nutrient dynamics compared to fungal growth 

makes a reasonable working hypothesis. 

The QSS approximation is probably the most frequently used method of model simplification 

in mathematical models of complex biological phenomena across a wide range of time 
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scales. For chemical reaction networks, where reaction steps can be grouped as 'fast' and 

'slow', the QSS approximation is seen to apply, for example to the communication system of 

slime moulds (Stiefenhofer, 1998). Also in predator-prey models (Borghans et al., 1996; 

Huisman & De Boer, 1997) and models of HIV infection (Lenbury et al., 2000) the QSS 

approximation can be applied. A QSS approximation often yields revealing analytical 

formulae and frequently circumvents problems of stiffness in the numerical integration of 

systems of differential equations. 

We show how a QSS approximation simplifies the full fungal growth model (Lamour et al., 

2001). We investigate the conditions under which a fungus is able to invade a fungal-free 

habitat containing substrate for fungal growth, and alternatively when the fungus goes 

extinct. From an ecological and experimental point of view, it is relevant to derive a 

quantitative criterion that determines whether fungal invasion or extinction will take place. In 

this context an analogy can be made with the basic reproductive number of a pathogen, R0, 

defined as the average number of new infections produced following the introduction of a 

single infective individual to an infection-free system (e.g. Diekmann et al., 1990). Clearly, for 

an individual to invade requires R0 > 1. If R0 < 1, then the epidemic dies out. In the fungal 

growth model, knowledge of factors that determine fungal invasion and extinction is essential 

to an understanding of the fungal dynamics. 

In this paper we derive an explicit fungal invasion criterion for the simplified model, which 

was not possible for the full model. Lack of a priori knowledge of the behaviour of the limit of 

the fungal growth term ( x ^ in equation 2.1 (g) below) as B approaches zero, made it 

impossible to carry out a direct linear stability analysis of the full problem. We circumvent this 

problem by simplifying the model by a quasi-steady state approximation. We use the fungal 

invasion criterion to characterise parameter domains for invasion and extinction. We then 

apply this invasion criterion to the dynamics of the full model. In a subsequent paper, we 

relate the invasion criterion to experimental data and estimate model parameters based on 

quantitative data on growth of fungal hyphae in response to a substrate source. 

2. Model description 

The fungal growth model is described in detail in Lamour ef al. (2001), i.e. Chapter 2. Briefly 

(Tables 1 & 2), the model describes the colonization of substrate (S), decomposition of 

colonized substrate (I), subsequent uptake of carbon (C*) and nitrogen (NT) into an internal 

carbon (C) and nitrogen (N) pool, and incorporation into fungal biomass (B). 



30 

Table 1 . Model variables with d imensions. 

State d imension" 
S substrate available to be colonised by the fungus Wc-umts 
I colonised substrate Wc-umts 
C* external carbon WC-Units 
N* external nitrogen WN-Units 
C carbon in the metabolic carbon pool Nc-units 
N nitrogen in the metabolic nitrogen pool NN^„ns 
B structural fungal b iomass /Vc-umts 
where N = number of 

Table 2 . Parameters with d imensions and default values for numerical computat ions. 

3 Parameter d imension value 

o 
P 
a 

t 

P 
v c -
vN . 

ki 
k2 

k3 

CO 

A 

H 

substrate supply per t ime unit 
substrate removal rate 
substrate colonisation probability per 
carbon unit b iomass 
fungal growth rate per C/B per N/B 
substrate decomposit ion rate 
C* loss rate 
N* loss rate 
C* uptake rate 
C leakage rate 
N* uptake rate 
N leakage rate 
carbon:nitrogen ratio of supplied substrate 
extra mineralization per t ime unit 
maintenance rate of structural fungal b iomass 
carbon units invested in decomposit ion per 
carbon unit substrate 
carbon:nitrogen ratio of structural fungal b iomass 
mortality rate of structural fungal b iomass 

Wc-units T 

T 1 

(/Vc-units(B)) 
see @ 

T 1 

r 
T 1 

T 1 

T 1 

T 1 

T 1 

Wc-units(/VN-units) 

Wlsi-units T 

T 1 

Wc-units(C-pool}(Wc-units(l)) 

Wc-units (WN-units) 

T 1 

106 

0.05 

0.1 

-IO-6 

0.15 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

9 

103 

0.02 

0.1 

10 

0.01 

where N = number of; T = t ime unit (day) 

@ where the d imension of T is T"1 Nc-unil5(B> N c - t e < B > 
^C-units{C-pool) ^N-units{N-pool} 
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Supply of substrate is a constant amount per time unit, a, whereas removal proceeds at a 

constant rate, p. Colonization of substrate is linearly related to new growth of biomass. 

Fungal growth is linearly proportional to | , i.e. a measure of the carbon concentration, and 

also to ^. With x being the proportionality constant, fungal growth is then modelled as 

t f -g -B , which simplifies to x ^ - . Colonization of substrate is also linearly related to 

substrate with a proportionality constant a , leading to the colonization term ocx-^-S. 

Decomposition is assumed to proceed at a constant rate, p. Carbon derived from 

decomposition (expressed in carbon units) equals p i , therefore nitrogen derived from 

decomposition is ^-(51, where \\i is the constant carbon:nitrogen ratio of the incoming 

substrate. Loss of nutrients is at rates vc- for carbon and vN. for nitrogen. Uptake and leakage 

of nutrients by the fungus are at rates k! and k2 respectively for carbon, and k3 and k4 

respectively for nitrogen. Mineralization is assumed to occur at a constant amount per time 

unit,!;. For growth of structural fungal biomass (B), carbon is utilized at an amount x ^ - per 

time unit. To achieve growth of biomass in terms of nitrogen, this quantity is multiplied by j , 

where <|> is the constant carbon:nitrogen ratio of structural fungal biomass. Maintenance of 

fungal biomass is a constant rate, co. Decomposition of colonized substrate demands carbon 

units out of the metabolic carbon pool at an amount A per unit of colonized substrate, 

leading to a carbon loss term Api per time unit. A constant mortality rate u. of biomass is 

assumed. The fungal growth model reads 

2.1 (a). — = CT-pS-at — S [substrate] 
dt B 

2.1(b). — = a x — S - (3I [colonized substrate] 
dt B 
dC* 

2.1(c). = p i - v c .C* -k ,C*+k 2 C [external carbon] 
dt 

dN* 1 
2.1(d). = —p i - v N .N * - k 3 N*+k 4 N + ̂  [external nitrogen] 

dt \|/ 

2.1(e). — = k ,C* -k 2 C-x coB-Api [metaboliccarbon pool] 

2.1(f). — = k 3 N * - k 4 N — x — [metabolic nitrogen pool] 
dt <)> B 

2.1 (g). — = x |xB [structural fungal biomass] 
dt B 



32 

f co if C > 0 
where the maintenance rate : 

[0 if C = 0 

(A if C > 0 
and the decomposition rate = { 

[0 if C = 0 

To avoid C going negative in equation 2.1 (e), we set the maintenance and decomposition 

rates to zero for C=0. Another option would be to use a Michaelis-Menten term in which 

these rates gradually decline to zero as C tends to zero. However, the situation where C is 

small relative to B and I is arguably not interesting in terms of fungal growth, therefore the 

simple linear term is preferred in the model. 

3. Quasi-steady state approximation 

If the nutrient dynamics of model (2.1) are very fast compared to the dynamics of fungal 

biomass, substrate and colonized substrate, then after a fast transient the nutrients can be 

regarded as in equilibrium. The quasi-steady states for the nutrients are dependent on the 

sizes of other variables. Under this assumption the rates of change in the nutrients are set to 

zero, resulting in the simplified model 

dS „ CN 
3.1 (a). — = CT - pS - ax S [substrate] 

3.1 (b). — = ax S - (i/ [colonized substrate] 

dC* „ 
3.1(c). —— = 0 [external carbon] 

dN* „ 
3.1(d). = 0 [external nitrogen] 

3.1(e). — = 0 [metabolic carbon pool] 
dt 

dN 

dt 

dS 

dt B 

dN n 
3.1(f). — = 0 [metabolic nitrogen pool] 

dt 

dB CN 
3.1(g). — = x u,B [structural fungal biomass] 

Solving equations 3.1 (c) to 3.1 (f) as a subset of the model, gives large, non-intuitive QSS 

expressions for the nutrients as functions of variables I and B (and of various parameters). 

The variable S does not appear in the rate of change in the nutrients. It is assumed that the 

levels of substrate, colonized substrate, and biomass change negligibly during the fast 
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transient. Differential equations for S, I, and B (equations 3.1 (a), (b), and (g) respectively), 

which are valid after the fast transient, are derived by substituting the QSS expressions for 

C and N in the fungal growth term x^ - . The fungal growth term is then also a function of 

variables I and B (Appendix 1). 

The QSS assumption should provide a good approximation for calculating the post-transient 

development of the system under consideration. The time that characterises the duration of 

the fast transient should be much smaller than the magnitude of time required for a 

significant change in S, I, or B during the post-transient period. Also, the change in I and B 

should be small in the fast transient, since the QSS expressions for the nutrients are 

functions of I and B. The QSS approximation thus reduces model (2.1) to three differential 

equations, i.e. for substrate, colonized substrate, and fungal biomass. 

4. Fungal invasion criterion 

Introducing a small amount of fungal biomass to a fungal-free system may lead to fungal 

invasion of the system or to extinction. Invasion implies that the trivial steady state is 

unstable and the introduced fungus will start growing. In cases where the trivial steady state 

is stable, the system will return to this trivial steady state after introduction of the fungus, i.e. 

it fails to invade. Before we calculate the invasion criterion, we simplify the fungal growth 

term x ^ (Appendix 1), since this is a large non-intuitive function of variables I and B. We 

show that x^ - is linear in I for small values of B. 

The QSS expressions for C and N were obtained from 3.1 (c) to 3.1 (f). These functions of 

variables I and B were substituted in the fungal growth term x-^- (Appendix 1), and 

calculated using the default parameter set (Table 2). On logarithmic scales, x ^ is linearly 

related to colonized substrate I for various values of B (Fig. 1 (a)). For small values of B this 

is a perfect linear relationship (for B^IO"4, R2=1), and for large values of B the relationship is 

reasonably linear (for B=108, R2=0.963). The slope and intercept of the curves in Fig. 1 (a) 

are plotted against In (B) in Fig. 1 (b) & (c) respectively. For decreasing values of B the slope 

approaches 1, indicating that x^ - is linear in I. Since B is assumed to be small at the time of 

invasion, we consider the limit of x-^- as B approaches zero. This can be analytically 

computed, or derived by hand (Appendix 1). For simplicity, we take mineralization (appearing 

in 2.1 (d)) zero, although the analysis can also be done for non-zero values, giving 
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Figure 1. The fungal growth term ( T ^ - in Appendix 1) versus colonized substrate (I) for 

various amounts of fungal biomass (B) in (a); The slope of these relationships in (b), and the 

intercept in (c) (default parameter values in Table 2). 
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A , I" C N 

4.1 lirnt — 

( — ^ A)PI if 4. k3 -g-i > ( — ^ i A ) p | 
k , + v c . k 3 + v N- V k , + v c . 

«>—^—-P- l i f * — ^ _ - P _ | < ( _ J S j A )p i 
k 3+vN . \f k 3+vN . y K+vc-

implying A < 
ki+vc. 

CN 
The inequality determining the form of hmx that is valid has a biological interpretation. 

Starting on the right-hand side of the inequality, carbon formed as a result of decomposition 

is either taken up by the fungus (k,) or lost due to assimilation by other microorganisms (vc«)-

Therefore, — is the carbon fraction that is taken up by the fungus per unit carbon 
k 1 + v c . 

substrate. Since A is the number of carbon units invested in decomposition per unit carbon 

substrate, - A indicates the positive carbon balance, which is gained for each 
k ,+v c . 

substrate amount pi colonized per time unit, where pi is in terms of carbon units (Tables 1 & 

2). Thus, the right-hand side of the condition indicates the carbon inflow per time unit. 

k. 
Similarly, for the left-hand side — is the nitrogen fraction that is taken up by the 

k, +vM . 
N3 T • N* 

k3 P, fungus, and 1 indicates the nitrogen inflow per time unit (pi is in terms of carbon 
k3 +vN . v|/ 

units, thus — is in terms of nitrogen units). The left-hand side is multiplied by <(>, to compare 

both sides of the inequality in the same carbon units. If the nitrogen inflow (in terms of carbon 

units) exceeds the carbon inflow, then fungal growth is set by the limiting carbon inflow (at 

the time of invasion). However, if the nitrogen inflow is limiting, then fungal growth is set by 

the nitrogen inflow. The default parameter set (Table 2) represents a system of limiting 

carbon inflow. 

If Mm T is indicated by Gl, where G equals ( A )p in cases where carbon is 
B-° B \+VC-

k P 
limiting, and fy in cases where nitrogen is limiting, then the model reads 

k 3 + v N . v|/ 
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4.2 (a). 

4.2 (b). 

4.2 (c). 

dS 

dt 

dl 

dt 

= 0 - p S - a G I S 

= a G I S - p l 

^ = G I - u B 
dt K 

The trivial steady state for model (4.2) is 

4.3 (S,T,B) = ( - . 0 , 0 ) 
P 

Substituting the trivial steady state (4.3) in the Jacobian matrix for model (4.2) gives the 

characteristic equation 

4.4 det 0 

0 

-ccG- 0 

0 aG—-p-a. 
P 

G - u , - X 

= 0 

from which we find the real eigenvalues 

4.5 (a). X, = - p 

4.5 (b). i 2 = ccG P 
P 

4.5 (c). X3=-\i 

Only for (one or more) positive eigenvalues does the solution of the system grow with time. 

The fungal invasion criterion is then 

4.6 aG p > 0 which can be rewritten as 
P 

4.7 a ( 

4.8 a<|> 

k <T k 
A)— > 1 implying A < - — for limiting carbon, and 

k ! + v c . p l ^+Vc. 

1 a 
k 3 + v N . v|/ p 

> 1 for limiting nitrogen 

5. Biological interpretation of the invasion criterion 

In the previous paper (Lamour ef a/., 2001) the overall-steady state of the full model required 

a cascade of conditions for existence. The conditions providing the steady state expressions 

S, I , B, C * , and C to be positive, could be combined to give 
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k1 CT , (o k-
5.1 a ( ! A )—>1 + — implying A < k ^ V c . p u k .+Vc. 

This equation (5.1) is almost similar to the fungal invasion criterion for a limiting carbon inflow 

(4.7). The left-hand side of (4.7) and (5.1) have the same biological interpretation, indicating 

a positive carbon balance, A , in the situation where all substrate ( — ) is 
k , + v c . p 

colonized with probability a (per carbon unit biomass). On the right-hand side of (4.7) and 

(5.1), quantity 1 represents the number of carbon units necessary for production of structural 

fungal biomass, and — (5.1 only) represents the number of carbon units necessary for 

maintenance (per carbon unit biomass). It is a clear biological interpretation that for growth 

the left-hand side should be larger than the right-hand side. Clearly, (5.1) is a stronger 

criterion than (4.7). 

Similarly, the conditions providing the steady state expressions N * and N to be positive 

(Lamour et a/., 2001) can be combined (assuming mineralization to be zero) to give 

5.2 a * — ^ _ 1 ^ > 1 
k3 +vN. v p 

Expression (5.2) is identical to the fungal invasion criterion in the case of a limiting nitrogen 

k, 
inflow (4.8). The left-hand side indicates the positive nitrogen balance, — , in the 

k 3 +v N . 

situation where all substrate (— in terms of carbon units, thus in terms of nitrogen 

P V P 

units) is colonized. It is then converted to carbon units by <(>, where the colonization 

probability is a (per carbon unit biomass). 

6. Parameter domains for invasion and extinction 

The values of the parameters determine whether carbon or nitrogen is limiting and, therefore, 

which form of the invasion criterion is valid. For both forms (4.7 & 4.8), parameters involved 

in the invasion criterion are varied over a wide range, and parameter domains for fungal 

invasion and extinction are shown (Fig. 2 & 3). For the default parameter set (Table 2), 

carbon is limiting and fungal invasion takes place. If substrate supply is low per time unit, the 

fungus can only invade the system if the substrate removal rate is small, whereas at higher 

supply rates, the removal rate may increase and still allow invasion (Fig. 2 (a) & Fig. 3 (a)). 


