Global and National
Soils and Terrain Digital Databases
(SOTER)

Procedures Manual
Global and National
Soils and Terrain Digital Databases
(SOTER)

Procedures Manual

Scanned from original by ISRIC – World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact soil.isric@wur.nl indicating the item reference number concerned.

UNEP
United Nations Environment Programme

ISSS-AISS-BIG
International Society of Soil Science

ISRIC
International Soil Reference and Information Centre

FAO
Food and Agricultural Organization of the United Nations

INTERNATIONAL SOIL REFERENCE AND INFORMATION CENTRE, 1993
Global

Subject headings: soil science ; databases.

ISBN 90-6672-051-4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications of such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, International Soil Reference and Information Centre, P.O. Box 353, 6700 AJ Wageningen, The Netherlands. The same work will be published by FAO in due course.

© ISRIC 1993
RELATED SOTER PUBLICATIONS

Oliveira, J.B. de and M. van den Berg, 1992. Application of the SOTER methodology to a semi-detailed survey (1:100,000) in the Piracicaba region (Sao Paulo State, Brazil). SOTER Report 6, ISSS, Wageningen. 28 p.

TABLE OF CONTENTS

PREFACE vii

ACKNOWLEDGEMENTS ix

PART I SOILS AND TERRAIN 1
1 General introduction 1
2 Mapping approach and database construction 3
 2.1 Introduction 3
 2.2 The SOTER mapping approach 3
 2.3 SOTER source material 5
 2.4 Associated and miscellaneous data 5
3 SOTER differentiating criteria 7
 3.1 Introduction 7
 3.2 Terrain 7
 3.3 Terrain components 8
 3.4 Soil components 9
 3.5 SOTER unit mappability 11
 3.6 The SOTER approach at other scales 11
4 SOTER database structure 13
 4.1 Introduction 13
 4.2 Geometric database 14
 4.3 Attribute database 14
5 Additional SOTER conventions 19
 5.1 Introduction 19
 5.2 SOTER unit codes 19
 5.3 Minimum size of the SOTER unit 19
 5.4 Number of soil and terrain components 20
 5.5 Representative soil profiles 20
 5.6 Updating procedures 20
6 Attribute coding 23
 6.1 Terrain 23
 6.2 Terrain component 29
 6.3 Terrain component data 31
 6.4 Soil component 35
 6.5 Profile 40
 6.6 Horizon data 42

PART II LAND USE AND VEGETATION 59
7 Land cover 59
 7.1 Land use 59
 7.2 Vegetation 61

PART III MISCELLANEOUS FILES 65
8 Reference files 65
 8.1 Source map 65
 8.2 Laboratory information 66
 8.3 Soil profile database 68
ANNEX 1. Hierarchy of landforms
ANNEX 2. Hierarchy of land use
ANNEX 3. Hierarchy of vegetation
ANNEX 4. ISO country codes
ANNEX 5. SOTER data entry forms
LITERATURE
GLOSSARY OF TERMS

LIST OF FIGURES

Figure 1 Relations between a SOTER Unit and their composing parts and major separating criteria 4
Figure 2 Terrain subdivided according to major landforms 7
Figure 3 Terrain further subdivided according to lithology 7
Figure 4 Terrain components differentiated according to surface forms 8
Figure 5 Terrain components differentiated according to slope gradients 8
Figure 6 SOTER units after differentiating soils 9
Figure 7 SOTER units, their terrain components, attributes, and location 13
Figure 8 SOTER attribute database structure with area and point data 15
Figure 9 Examples of slightly dissected and dissected landscapes as indicated by the density of the drainage on 1:50,000 maps 28
Figure 10 Texture groups of parent material 33
Figure 11 Texture classes of fine earth 55

LIST OF TABLES

Table 1 Non-spatial attributes of a SOTER unit 17
Table 2 Hierarchy of major landforms 25
Table 3 Hierarchy of lithology 29
Table 4 Size classes for structure elements of various types 53
Table 5 Attributes of land use and vegetation files 59
Table 6 Hierarchy of land use; land use orders, groups, and systems 60
Table 7 Hierarchical vegetation classes 61
Table 8 Related tables 65
Table 9 Attribute list for climate station and climate data files 69
Table 10 Example of various kinds of climatic data recorded for a climate station 73
PREFACE

Based on a discussion paper "Towards a Global Soil Resources Inventory at Scale 1:1M" prepared by Somrook (1984), the International Society of Soil Science (ISSS) convened a workshop of international experts on soils and related disciplines in January 1986 in Wageningen, the Netherlands, to discuss the "Structure of a Digital International Soil Resources Map annex Data Base" (ISSS, 1986a). Based on the findings and recommendations of this workshop a proposal was written for SOTER, a World SOils and TERRain Digital Data Base at a scale of 1:1 million (ISSS, 1986b).

A small international committee was appointed to propose criteria for a "universal" map legend suitable for compilation of small scale soil-terrain maps, and to include attributes required for a wide range of interpretations such as crop suitability, soil degradation, forest productivity, global soil change, irrigation suitability, agro-ecological zonation, and risk of droughtiness. The committee compiled an initial list of attributes. The SOTER approach received further endorsement at the 1986 ISSS Congress in Hamburg, Germany.

A second meeting, sponsored by the United Nations Environment Programme (UNEP), was held in Nairobi, Kenya, in May 1987 to discuss the application of SOTER for preparing soil degradation assessment maps. Two working groups (legend development and soil degradation assessment) met concurrently during this meeting. The legend working group was charged with the task of developing Guidelines for a World Soils and Terrain Digital Database at a 1:1 M scale, to propose general legend concepts, to prepare an attribute file structure, and to draft an outline for a Procedures Manual (ISSS, 1987).

Following the Nairobi meeting, UNEP formulated a project document: "Global Assessment of Soil Degradation" and asked ISRIC to compile, in close collaboration with ISSS, FAO, the Winand Staring Centre and the International Institute for Aerospace Survey and Earth Sciences (ITC), a global map on the the status of human-induced soil degradation at a scale of 1:10 million, and to have this accompanied by a first pilot area at 1:1 million scale in South America where both status and risk of soil degradation would be assessed on the basis of a digital soil and terrain database as envisaged by the SOTER proposal. In this context ISRIC subcontracted the preparation for a first draft of a Procedures Manual for the 1:1 M pilot study area to the Land Resource Research Centre of Agriculture Canada1.

The first draft of the Procedures Manual (Shields and Coote, 1988) was presented at the First Regional Workshop on a Global Soils and Terrain Digital Database and Global Assessment of Soil Degradation held in March 1988 in Montevideo, Uruguay (ISSS, 1988). The proposed methodology was then tested in a pilot area, covering parts of Argentina, Brazil and Uruguay (LASOTER). Soil survey teams of the participating countries collected soils and terrain data to assess the workability of the procedures as proposed in the draft Manual. During two correlation meetings and field trips minor changes were suggested, while further modifications were recommended at a workshop that concluded the data collection stage. The comments from both workshops were incorporated in the January 1989 version of the Procedures Manual (Shields and Coote, 1989).

Application of the SOTER methodology in an area along the border between the USA and Canada (NASOTER), revealed additional shortcomings in the second version of the Manual.

1 Presently the Centre for Land and Biological Resources Research
Also, the first tentative interpretation of the LASOTER data as well as the integration of the attribute data into a Geographic Information System demonstrated the need for further modifications.

A third revised version of the Manual was compiled by the SOTER staff (ISRIC, 1990a) and circulated for comments amongst a broad spectrum of soil scientists and potential users of the database. A workshop on Procedures Manual Revisions was convened at ISRIC, Wageningen, to discuss the revised legend concepts and definitions (ISRIC, 1990b).

Based on the recommendations of this workshop, the proposed modifications were further elaborated, resulting in a fourth draft version of the Procedures Manual (ISRIC, 1991). This Manual consisted of three parts, the first of which dealt with terrain and soil characteristics. The second part treated land use in a summary way in the expectation that a more comprehensive structure for a land use database would become available from other organizations. In the third part information on related files and climatic data needed for SOTER applications were described. In each section definitions and descriptions of the attributes to be coded were given, while in the first section an explanation of the mapping approach was provided.

Unlike the 1st and 2nd versions of the Manual, the later versions did not elaborate upon the soil degradation assessment as this is considered to be an interpretation of the database. Guidelines for this and other interpretations will be subject of separate publications. Technical specifications (e.g. table definitions, primary keys, table constraints etc.) and a user manual for the SOTER database will also be published separately.

A second SOTER workshop organized by UNEP was convened in February 1992 in Nairobi. At this meeting FAO expressed its full support for the SOTER programme and indicated that it was prepared to use the SOTER methodology for storing and updating its own data on world soil and terrain resources. To facilitate the use of SOTER data by FAO it was decided to use the FAO-Unesco Soil Map of the World Revised Legend (FAO, 1988) as a basis for characterising the soils component of the SOTER database.

To take account of these decisions a fifth version of the Manual was prepared in 1992 with active participation by FAO. The main arrangement of this latest version of the Manual is similar to the fourth version, with the difference that the Manual now consists of two parts only, the first one dealing with soils and terrain, and the second one dealing with the accessory databases in which land use, vegetation and climatic data can be stored.

No further revisions of the Manual are planned until more experience has been gained in the application of the methodology according to the current guidelines. Nevertheless, all comments are welcome, and should be sent to the Manager of the SOTER project.

Vincent van Engelen
Wen Ting-tiang
editors

1 c/o Director, International Soil Reference and Information Centre, P.O.Box 353, 6700 AJ Wageningen, The Netherlands.
ACKNOWLEDGEMENTS

The SOTER project, an initiative of the ISSS, was very effectively supported by Working Group DM of the ISSS under chairmanship of M.F. Baumgardner. The project has benefited enormously from the experience of a wide range of soil and other natural resource scientists from all over the world. Our special thanks go to the following persons who were very active in the compilation of the manual:

D.R. Coote
J.H.M. Pulles
J. Shields

Participation of the following persons in the various workshops and pilot area studies is also highly appreciated:

PART I SOILS AND TERRAIN

1 General introduction

Aim

The aim of the SOTER project is to utilize current and emerging information technology to establish a World Soils and Terrain Database, containing digitized map units and their attribute data (ISSS, 1986b). The main function of this database is to provide the necessary data for improved mapping and monitoring of changes of world soil and terrain resources.

It is composed of sets of files for use in a Relational DataBase Management System (RDBMS) and Geographic Information System (GIS). It is capable of delivering accurate, useful and timely information to a wide range of scientists, planners, decision-makers and policy-makers.

Central Database

In the initial phases of the SOTER project no concrete plans have been formulated for the physical establishment of a centralized database. Rather, a separate database will be set up for each area for which a land resource inventory is being undertaken according to the SOTER methodology. The common approach does, however, guarantee the possibility of merging the individual databases into a global database if and when this becomes feasible. Through its basic activities SOTER also intends to contribute to the establishment of national and regional soil and terrain databases, founded upon the same commonly acceptable principles and procedures, so as to further facilitate the exchange of land resource information and ultimate incorporation into a global database.

Characteristics

The database has the following characteristics:

a) it is structured to provide a comprehensive framework for the storage and retrieval of uniform soil and terrain data that can be used for a wide range of applications at different scales,

b) it will contain sufficient data to allow information extraction at a resolution of 1:1 million, both in the form of maps and tables,

c) it will be compatible with global databases of other environmental resources,

d) it will be amenable to periodic updating and purging of obsolete and/or irrelevant data, and

e) be accessible to a broad array of international, regional and national environmental specialists through the provision of standardized resource maps, interpretative maps and tabular information essential for the development, management and conservation of environmental resources.

Procedures

The database is supported by a Procedures Manual which translates SOTER’s overall objectives into a workable set of arrangements for the selection, standardization, coding and storing of soil and terrain data.
SOTER requires soils from all corners of the world to be characterised under a single set of rules. As the FAO-Unesco (1974-1981) Soil Map of the World was designed for this purpose, SOTER has adopted the recently Revised Legend (FAO, 1988) as the main tool for differentiating and characterizing its soil components. As there is no universally accepted system for world-wide classification of terrain, SOTER has designed its own system, presented in chapter 6.1 of this Manual, which is partly based on earlier FAO work.

The input of soil and terrain data into the SOTER database is contingent upon the availability of sufficiently detailed information. Although some additional information gathering may be required when preparing existing data for acceptance by the database, the SOTER approach is not intended to replace traditional soil surveys. Hence this manual cannot be used as guidelines for soil survey procedures or any other methodology for the collection of field data. Nor does it present a methodology for the interpretation of remotely sensed data. Several handbooks on these techniques are available and details of land resource survey methodology should be contained within them.
2 Mapping approach and database construction

2.1 Introduction

Within the context of the general objectives of SOTER, as defined in chapter 1, the following subjects will be treated in more detail:

a) the procedure for delineating areas with a homogeneous set of soil and terrain characteristics,

b) the construction of an attribute database related to the mapping units and based on well-defined differentiating criteria,

c) the development of a methodology that should be transferable to and usable by developing countries for national database development at the same or at a larger scale (technology transfer).

2.2 The SOTER mapping approach

The methodology of mapping of land characteristics outlined in this manual originated from the idea that land (in which terrain and soil occur) incorporates processes and systems of interrelationships between physical, biological and social phenomena evolving through time. This idea was developed initially in Russia and Germany (landscape science) and became gradually accepted throughout the world. A similar integrated concept of land was used in the land systems approach developed in Australia by Christian and Stewart (1953) and evolved further by Cochrane et al. (1981, 1985), McDonald et al. (1990) and Gunn et al. (1990). SOTER has continued this development by viewing land as being made up of natural entities consisting of combinations of terrain and soil individuals.

Underlying the SOTER methodology is the identification of areas of land with a distinctive, often repetitive, pattern of landform, lithology, surface form, slope, parent material, and soil. Tracts of land distinguished in this manner are named SOTER units. Each SOTER unit thus represents one unique combination of terrain and soil characteristics. Figure 1 shows the representation of a SOTER unit in the database and gives an example of a SOTER map, with polygons that have been mapped at various levels of differentiation.

The SOTER mapping approach in many respects resembles physiographic soil mapping. Its main difference lies in the stronger emphasis SOTER puts on the terrain-soil relationship as compared to what is commonly done in traditional soil mapping. This will be true particularly at smaller mapping scales. At the same time SOTER adheres to rigorous data entry formats necessary for the construction of an universal terrain and soil database. As a result of this approach the data accepted by the database will be standardized and will have the highest achievable degree of reliability.

The methodology presented in this manual has been developed for applications at a scale of 1:1 million and has been tested successfully in pilot areas in North and South America.
Figure 1 Relations between a SOTER Unit and their composing parts and major separating criteria.

Example (see figure 1)
The map shown in figure 1 could have the following legend:

SOTER
Description
Unit

317 one terrain type with one terrain component and one soil component
318 one terrain type consisting of an association of two terrain components each having a particular soil component
319 one terrain type, consisting of an association of two terrain components, the first having one soil component and the second having an association of two soil components
320 one terrain type, consisting of an association of three terrain components, the first having one soil component, the second having an association of three soil components and the third having one soil component
321 one terrain type with one terrain component having an association of two soil components (occurs as two polygons)
322 one terrain type, consisting of an association of two terrain components each with a soil component

Nevertheless, the methodology also is intended for use at larger scales connected with the development of national soil and terrain databases. A first testing of such a detailed database was carried out in São Paulo State of Brazil at a scale of 1:100,000 (Oliveira and van den Berg, 1992). The SOTER methodology also lends itself well to the production of maps and associated tables at scales smaller than 1:1 million.
Attributes of terrain, soil and other units as used by SOTER are hierarchically structured to facilitate the use of the procedures at scales other than the reference scale of 1:1 million.

2.3 SOTER source material

Basic data sources for the construction of SOTER units are topographic, geomorphological, geological and soil maps at a scale of 1:1 million or larger (mostly exploratory and reconnaissance maps). In principle all soil maps that are accompanied by sufficient analytical data for soil characterization according to the revised FAO-Unesco Soil Map of the World Legend (FAO, 1988) can be used for mapping according to the SOTER approach. Seldom, however, will an existing map and accompanying report contain all the required soil and terrain data. Larger scale (semi-detailed and detailed) soil and terrain maps are only suitable if they cover sufficiently large areas. In practice such information will be mostly used to support source material at smaller scales.

As SOTER map sheets will cover large areas, often they will include more than one country, and correlation of soil and terrain units may be required. Where no maps of sufficient detail exist for a certain study area, or where there are gaps in the available data, it may still be possible to extract information from smaller scale maps (e.g. the FAO-Unesco Soil Map of the World at 1:5 million scale or similar national maps), provided that some additional fieldwork is carried out, where necessary in conjunction with the use of satellite imagery. Hence there will often be a need for additional field checks, sometimes supported by satellite imagery interpretation and extra analytical work to complement the existing soil and terrain information. This should be carried out, however, within the context of complementing, updating or correlating existing surveys. It must be stressed that SOTER specifically excludes the undertaking of new land resource surveys within its programme.

Where it is necessary to include an area in the SOTER database for which there is insufficient readily available information, then it is recommended that a survey be carried out according to national soil survey standards, while at the same time ensuring that all parameters required by the SOTER database but not already part of the data being collected. This will ease the subsequent conversion from the national data format into the SOTER data format.

SOTER uses the 1:1 million Operational Navigation Charts and its digital version, the Digital Chart of the World (DMA, 1992), for its base maps. Although it aims at eventual world-wide coverage, the SOTER approach does not envisage a systematic mapping programme, and hence does not prescribe a standard block size for incorporation in the database. Nevertheless, SOTER does recommend that at it its reference scale of 1:1 million a block should cover a substantial area (e.g. 100,000 km²).

2.4 Associated and miscellaneous data

SOTER is a land resource database. For many of its applications SOTER data can only be used in conjunction with data on other land-related characteristics but SOTER does not aspire to be able to provide all these data. Nevertheless to obtain a broad characterisation of tracts of land in terms of these complementary characteristics, the SOTER database does include files on climate, vegetation and land use. The former file is in the form of point data, that can be linked to SOTER units through GIS software. Vegetation and land use information is, on the other hand, provided at the level of SOTER units. However, it should be stressed that for
specific applications, information on these characteristics should be obtained from specialized databases such as a climatic database. This also applies to natural resource data (e.g. groundwater hydrology) and socio-economic data (e.g. farming systems) which do not form part of the SOTER database.

Miscellaneous data refers to background information that is not directly associated with land resources. SOTER stores information on map source material, laboratory methods, and soil databases from which profile information has been extracted.
3 SOTER differentiating criteria

3.1 Introduction

The major differentiating criteria are applied in a step-by-step manner, each step leading to a closer identification of the land area under consideration. In this way a SOTER unit can be defined progressively into terrain, terrain component and soil component. Successively an area can thus be characterized by its terrain, its consisting terrain components and their soil components.

The level of disaggregation at each step in the analysis of the land depends on the level of detail or resolution required and the information available. The reference scale of SOTER being 1:1 million, this Manual provides the necessary detail to allow mapping at that scale.

3.2 Terrain

Physiography

Physiography is the first differentiating criterion to be used in the characterisation of SOTER units. The term physiography is used in this context as the description of the landforms of the earth’s surface. It can best be described as identifying and quantifying as far as possible the major landforms, based on the dominant gradient of their slopes and their relief intensity (see chapter 6.1). In combination with a hypsometric (absolute elevation above sea-level) grouping, and a factor characterizing the degree of dissection, a broad subdivision of an area can be made and delineated on the map (see figure 2), referred to as first and second level major landform in table 2 of chapter 6. In this way three major landforms can be distinguished in figure 2.

![Figure 2](image1.png)
Figure 2 Terrain subdivided according to major landforms.

![Figure 3](image2.png)
Figure 3 Terrain further subdivided according to lithology.
Parent material

Areas corresponding to major or regional landforms can be subdivided according to lithology or parent material (see chapter 6.1). This will lead to a further definition of the physiographic units by the second differentiating criterion: lithology. The result is shown in figure 3.

Terrain, in the SOTER context, is thus defined as a particular combination of landform and lithology which characterizes an area. It also possesses one or more typical combinations of surface form, mesorelief, parent material aspect and soil. These form the rationale for a further subdivision of the terrain into terrain components and soil components.

There is no limit to the number of subdivisions that can be applied to the terrain (and terrain components). It is, however, expected that in most cases a maximum of 3 or 4 terrain components and 3 soil components will be sufficient to adequately describe the terrain.

3.3 Terrain components

Surface form, slope, etc.

The second step in the subdivision is the identification of areas, within each terrain, with a particular (pattern of) surface form, slope, mesorelief and, in areas covered by unconsolidated material, texture of parent material. This will result in a further partitioning of the terrain into terrain components as is shown in figures 4 and 5.

It should be noted that at this level of separation it is not always possible at a scale of 1:1 million to map terrain components individually, because of the complexity of their occurrence. In such cases the information related to non-mappable terrain components is stored in the attribute database only, and no entry is made into the geometric database.
3.4 Soil components

The final step in the differentiation of the terrain is the identification of soil components within the terrain components. As with terrain components, soil components can be mappable or non-mappable at the considered scale. In the case of mappable soil components, each soil component represents a single soil within a SOTER unit (see figure 6). However, at a scale of 1:1 million it often will be difficult to separate soils spatially, and a terrain component is likely to comprise a number of non-mappable soil components. In traditional soil mapping procedures such a cluster is known as a soil association or soil complex (two or more soils which, at the scale of mapping, cannot be separated). Non-mappable terrain components (of which there must be at least two in a SOTER unit) are by definition associated with non-mappable soil components. Nevertheless, in the attribute database each non-mappable terrain component can be linked to one or more specific (but non-mappable) soil components. Non-mappable soil components, as in the case of the non-mappable terrain components, do not figure in the geometric database.

![Figure 6 SOTER units after differentiating soils.](image)

Differences in classification

As the SOTER soil components are characterized according to the FAO-Unesco Soil Map of the World Legend, so the criteria used for separating soil components within each terrain component are based on FAO diagnostic horizons and properties. At the SOTER reference scale of 1:1 million, soils must, in general, be characterized up to the 3rd (i.e. subunit) level following the guidelines provided for this in the annex to the Revised Legend (FAO, 1988).

For soils classified according to Soil Taxonomy (Soil Survey Staff, 1975, 1990 and 1992), the FAO sub-unit level corresponds roughly to the subgroup level. As many of the diagnostic horizons and properties as used by Soil Taxonomy are similar to those employed by FAO, generally there will not be many problems at this level of classification in translating Soil Taxonomy units into FAO units. A major difference between the two systems is the use in Soil Taxonomy of soil temperature and soil moisture regimes, particularly at suborder level. Since these characteristics do not feature in the FAO classification, and SOTER being basically a land resource database, intends to keep climatic data (including those related to soil
climate) separated from land and soil data, a more drastic conversion will be required of Soil Taxonomy units which are defined in terms of soil temperature and soil moisture characteristics. Nevertheless, experience has shown that even in these cases conversion from Soil Taxonomy great groups to FAO sub-units usually will not necessitate major adjustments of to the boundaries of soil mapping units.

Differences in use

In addition to diagnostic horizons and properties, soil components can also be separated according to other factors, closely linked to soils, that have a potentially restricting influence on land use or may affect land degradation. These criteria, several of which are listed by FAO as phases, can include both soil (sub-surface) and terrain (surface, e.g. micro-relief) factors.

Soil profiles

For every soil component at least one, but preferably more, fully described and analyzed reference profiles should be available from existing soil information sources. Following judicious selection, one of these reference profiles will be designated as the representative profile for the soil component. The data from this representative profile must be entered into the SOTER database in accordance with the format as indicated in sections 6.5 and 6.6 of this Manual. This format is largely based upon the FAO Guidelines for Soil Description (FAO, 1990), which means that profiles described according to FAO or to the Soil Survey Manual (Soil Survey Staff, 1951), from which FAO has derived many of its criteria, can be entered with little or no reformatting being necessary. Compatibility between the FAO-ISRIC Soil Database (FAO, 1989) and the relevant parts of the SOTER database also will facilitate transfer of data already stored in databases set up according to FAO-ISRIC standards.

Horizons

It is recommended that for SOTER the number of horizons per profile is restricted to a maximum of five subjacent horizons, reaching a depth of at least 150 cm where possible. Except for general information on the profile, including landscape position and drainage, each horizon has to be fully characterised in the database by two sets of attributes based on chemical and physical properties. The first set consists of single value data that belong to the representative profile. The second set holds the maximum and minimum values of each numeric attribute, derived from all available reference profiles. In case there is only one reference profile for a soil component then it will obviously not be possible to complete these additional tables.

Optional and mandatory data

Both sets of horizon data consist of mandatory and optional data. Where mandatory data are missing, the SOTER database will accept expert estimates for such values. They will be flagged as such in the database. Optional data should only be entered where the information on them is reliable. For the representative profile these must be measured data.

As with terrain components, the percentage cover of the soil component within the terrain component is indicated. The relative position and relationship of soil components vis-à-vis each other within a terrain component is recorded in the database as well.
3.5 SOTER unit mappability

SOTER units in the database and on the map

At the reference scale of 1:1,000,000 a SOTER unit is composed of an unique combination and pattern of terrain, terrain component and soil component. A SOTER unit is labelled by a SOTER unit identification code that allows retrieval from the database of all terrain, terrain component and soil component data, either in combination or separately. The inclusion of the three levels of differentiation in the attribute database does not imply that all components of a SOTER unit can be represented on a map, as the size of individual components, or the intricacy of their occurrence, may preclude cartographic presentation. The areas shown on a SOTER map can thus correspond to any of the three levels of differentiation of a SOTER unit: terrain, terrain components or soil components. The components not mapped are known to exist, and their attributes are included in the database, although their exact location and extent cannot be displayed on a 1:1 million map.

Differences

In an ideal situation, at least from the point of view of geo-referencing the data, a SOTER unit on the map would be similar to a soil component in the database, i.e. the soil component of the SOTER unit could be delineated on a map. However, at the SOTER reference scale of 1:1 million it is unlikely that many SOTER units can be distinguished on the map at soil component level. This would only be possible if the landscape is relatively uncomplicated. A more common situation at this scale would be for a SOTER unit to consist of terrain with non-mappable terrain components linked to an assemblage of non-mappable soil components (a terrain component association) or, alternatively, a SOTER unit with mappable terrain components that contain several non-mappable soil components (a similar situation as with a soil association on a traditional soil map).

Thus, while in the attribute database a SOTER unit will hold information on all levels of differentiation, a SOTER map will display units whose content varies according to the mappability of the SOTER unit components. The disadvantage of not being able to accurately locate terrain components and/or soil components is therefore only relevant when data of complex terrains are being presented in map format. It does not affect the capability of the SOTER database to generate full tabular information on terrain, terrain component and soil component attributes while at the same indicating the spatial relationship between and within these levels of differentiation.

3.6 The SOTER approach at other scales

Smaller scales

The methodology presented in this manual has been developed for applications at a scale of 1:1 million, which is the smallest scale still suitable for land resource assessment and monitoring at national level. However, as potentially the most complete universal terrain and soil database, SOTER is also suited to provide the necessary information for the compilation of smaller scale continental and global land resource maps and associated data tables. The methodology was tested by FAO for the compilation of the physiographic base for a future update of the Soil Map of the World (Eschweiler, 1993 and Wen, 1993).
Flexibility to cater for a wide range of scales is achieved through adopting a hierarchical structure for various major attributes, in particular those that are being used as differentiating criteria (landform, lithology, surface form, etc.). Examples of such hierarchies are given in this Manual for land use and vegetation (see chapter 7). Different levels of these hierarchies can be related to particular scales. A hierarchy for the soil component can be derived from the FAO-Unesco Soil Map of the World Legend, with the level of soil groupings being related to extremely small scale maps, as exemplified by the map of world soil resources at 1:25 million (FAO, 1991). Soil units (2nd level) can be used for 1:5 million world soil inventory maps, while the soil subunits are most suitable for 1:1 million mapping. The density per unit area of point observations will vary according to the scale employed, with larger scales requiring a more compact ground network of representative profiles, as soils are being characterised in more detail.

A simplification of the database can be applied at scales substantially smaller than the reference scale of 1:1 million, but only the most elementary soil physical and chemical data are relevant if the scale is smaller than 1:10 million. It is thus necessary to realize that the SOTER database discussed in this Manual is meant for a scale of 1:1 million only, and that expansion or contraction of the data set will be necessary when changing the resolution of the SOTER database.

Larger scales

As a systematic and highly organized way of mapping and recording terrain and soil data, the SOTER methodology can easily be extended to include reconnaissance level inventories, i.e. at a scale between 1:1 million and 1:100,000 (e.g. Oliveira and van den Berg, 1992).

Adjustments to the content of the attribute data set are necessary if SOTER maps at scales other than 1:1 million are being compiled. With an increase in resolution, the highest level constituents of a SOTER unit, i.e. the terrain, will gradually lose importance, and may disappear altogether at a scale of 1:100,000. This is because in absolute terms the area being mapped is becoming smaller, and terrain alone may not continue to offer sufficient differentiating power. Conversely, the lower part of the SOTER unit will gain in importance with more detailed mapping. At larger scales SOTER units will thus become delineations of soil entities, with the information on terrain becoming incorporated in the soil attributes. Hence scale increases require more detailed information on soils for most practical applications. Additional attributes which might be included could be soil micronutrient content, composition of organic fraction, detailed slope information, etc.
4 SOTER database structure

4.1 Introduction

In every discipline engaged in mapping of spatial phenomena, two types of data can be distinguished:

1) geometric data, i.e. the location and extent of an object represented by a point, line or surface, and topology (shapes, neighbours and hierarchy of delineations),

2) attribute data, i.e. characteristics of the object.

These two types of data are present in the SOTER database. Soils and terrain information consist of a geometric component, which indicates the location and topology of SOTER units, and of an attribute part that describes the non-spatial SOTER unit characteristics. The geometry is stored in that part of the database that is handled by Geographic Information System (GIS) software, while the attribute data is stored in a separate set of attribute files, manipulated by a Relational Database Management System (RDBMS). A unique label attached to both the geometric and attribute database connects these two types of information for each SOTER unit (see figure 7, in which part of a map has been visualized in a block diagram).

![Diagram showing SOTER units, their terrain components (tc), attributes, and location.](image)

Figure 7 SOTER units, their terrain components (tc), attributes, and location.

The overall system (GIS plus RDBMS) stores and handles both the geometric and attribute database. This manual limits itself to the attribute part of the database only, in particular through elaborating on its structure and by providing the definitions of the attributes (chapter 6). A full database structure definition is given by Tempel (in prep.).
A relational database is one of the most effective and flexible tools for storing and managing non-spatial attributes in the SOTER database (Pulles, 1988). Under such a system the data is stored in tables, whose records are related to each other through the specific identification fields (primary keys), such as the SOTER unit identification code. These codes are essential as they form the links between the various subsections of the database, e.g. the terrain table, the terrain component and the soil component tables. Another characteristic of the relational database is that when two or more components are similar, their attribute data need only to be entered once. Figure 8 gives a schematic representation of the structure of the attribute database. The blocks represent tables in the SOTER database and the solid lines between the blocks indicate the links between the tables.

4.2 Geometric database

The geometric database contains information on the delineations of the SOTER unit. It also holds the base map data (cultural features such as roads and towns, the hydrological network and administrative boundaries). In order to enhance the usefulness of the database, it will be possible to include additional overlays for boundaries outside the SOTER unit mosaic. Examples of such overlays could be socio-economic areas (population densities), hydrological units (watersheds) or other natural resource patterns (vegetation, agro-ecological zones).

4.3 Attribute database

The attribute database consists of sets of files for use in a Relational Database Management System (RDBMS). The attributes of the terrain and terrain component are either directly available or can be derived from other parameters during the compilation of the database. Only for horizon data, two types of attributes can be distinguished, depending on their importance and availability:

1) mandatory attributes
2) optional attributes

Many of the horizon parameters of the soil component consist of measured characteristics of which the availability varies considerably. However, there is a minimum set of soil attributes that are generally needed if any realistic interpretation of the soil component of a SOTER unit is to be expected. Therefore their presence is considered mandatory. Other soil horizon attributes are of lesser importance and their presence in the database is considered optional. Whether a horizon attribute is mandatory or optional is indicated in the chapter describing the attributes. It is imperative that, in order to preserve the integrity of the SOTER database, a complete list of mandatory attributes is entered for each soil component. Optional attributes are accepted by the database as and when available.

Each of the attributes can be divided into descriptive (e.g. landform) and numerical (e.g. pH, slope gradient) data.

Under the SOTER system of labelling (see chapter 5.2 for a detailed description of the labelling conventions) all SOTER units are given an unique identification code, consisting of 4 digits. In the terrain component and soil component tables this identification code is completed with subcodes for terrain component and soil component number.
Where identical terrain components and soil components occur in several SOTER units in different proportions, a separation between the tables holding the data on proportion/position of the terrain component and soil component (terrain component block and soil component block) and the tables holding the data of the terrain component and soil component (terrain component data block and profile and horizon blocks) is made (see figure 8).

Thus, the terrain component information is split into two tables:

1) the terrain component table which indicates the SOTER unit to which the terrain component belongs and the proportion that it occupies within that unit

2) the terrain component data table which holds all specific attribute data for the terrain component

In the first table there is space for an entry for each individual terrain component within a SOTER unit, while in the second table only entries are made for data of these terrain components if they possess a not previously occurring set of attribute values.

In the same way the soil component information is stored in three tables:

1) the soil component table holds the proportion of each soil component within a SOTER unit/terrain component combination and its position within the terrain component.

2) the profile table holds all attribute data for the soil profile as a whole

3) the horizon table holds the data for each individual soil horizon. To be able to give some degree of variability it consists of four sets of attribute values:
 a) single values taken from the representative profile, either:
 1) measured, or
 2) estimated
b) maximum (measured) values taken from all available profiles within the soil component

c) minimum (measured) values taken from all available profiles within the soil component

For the profile and horizon tables the same conditions for the terrain component data table are valid. Only soil profiles not previously described may be entered. For profile/horizon data describing soils occurring in various soil components only one entry is necessary.

The horizon tables must contain all mandatory measured data: (a1) data set. In case data is not available for some of the quantifiable attributes, SOTER will allow expert estimates to be used for attributes of the representative profile: (a2) data set. Measured and estimated values of the representative profile will thus be stored separately.

To be able to indicate the variability within a soil component various statistical parameters can be determined. Data from the representative profile are considered as modal values. However, considering the small number of profiles generally available for the compilation of the soil component, it is not realistic to aim at standard deviations and means. Therefore only maximum and minimum values of the profiles of the same soil component give an indication of the range of variation that exist within the component. They will be stored respectively in the (b) and (c) data sets.

It is strongly recommended that in conjunction with the SOTER database a national soil profile database be established along the lines of the FAO-ISRIC Soil Database (FAO, 1989), in which, amongst others, all representative profiles would be accommodated.

All mandatory and optional attributes for the soil component, as well as all other non-spatial attributes of the SOTER units, are listed in table 1. The listing for the soil component attributes is compatible, but contains some additional items, with the data set that is stored in the FAO-ISRIC Soil Database.

The database can be asked to calculate automatically a number of derived parameters from the values entered for the mandatory and optional attributes. These include, amongst others, CEC per 100 g clay, base saturation and textural class.
Table 1. Non-spatial attributes of a SOTER unit.

<table>
<thead>
<tr>
<th>TERRAIN</th>
<th>TERRAIN COMPONENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SOTER unit_ID</td>
<td>18 terrain component data_ID</td>
</tr>
<tr>
<td>2 year of data collection</td>
<td>19 dominant slope</td>
</tr>
<tr>
<td>3 map_ID</td>
<td>20 length of slope</td>
</tr>
<tr>
<td>4 minimum elevation</td>
<td>21 form of slope</td>
</tr>
<tr>
<td>5 maximum elevation</td>
<td>22 local surface form</td>
</tr>
<tr>
<td></td>
<td>23 average height</td>
</tr>
<tr>
<td></td>
<td>24 coverage</td>
</tr>
<tr>
<td></td>
<td>25 surface lithology</td>
</tr>
<tr>
<td>11 dissection</td>
<td>26 texture group non-consolidated parent material</td>
</tr>
<tr>
<td>12 general lithology</td>
<td>27 depth to bedrock</td>
</tr>
<tr>
<td>13 permanent water surface</td>
<td>28 surface drainage</td>
</tr>
<tr>
<td></td>
<td>29 depth to groundwater</td>
</tr>
<tr>
<td></td>
<td>30 frequency of flooding</td>
</tr>
<tr>
<td></td>
<td>31 duration of flooding</td>
</tr>
<tr>
<td></td>
<td>32 start of flooding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOIL COMPONENT</th>
<th>HORIZON (* = mandatory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 SOTER unit_ID</td>
<td>63 profile_ID*</td>
</tr>
<tr>
<td>34 terrain component number</td>
<td>64 horizon number*</td>
</tr>
<tr>
<td>35 soil component number</td>
<td>65 diagnostic horizon*</td>
</tr>
<tr>
<td>36 proportion of SOTER unit</td>
<td>66 diagnostic property*</td>
</tr>
<tr>
<td>37 profile_ID</td>
<td>67 horizon designation</td>
</tr>
<tr>
<td>38 number of reference profiles</td>
<td>68 lower depth*</td>
</tr>
<tr>
<td>39 position in terrain component</td>
<td>69 distinctness of transition</td>
</tr>
<tr>
<td>40 surface rockiness</td>
<td>70 moist colour*</td>
</tr>
<tr>
<td>41 surface stoniness</td>
<td>71 dry colour</td>
</tr>
<tr>
<td>42 types of erosion/deposition</td>
<td>72 grade of structure</td>
</tr>
<tr>
<td>43 area affected</td>
<td>73 size of structure elements</td>
</tr>
<tr>
<td>44 degree of erosion</td>
<td>74 type of structure*</td>
</tr>
<tr>
<td>45 sensitivity to capping</td>
<td>75 abundance of coarse fragments*</td>
</tr>
<tr>
<td>46 rootable depth</td>
<td>76 size of coarse fragments</td>
</tr>
<tr>
<td>47 relation with other soil components</td>
<td>77 very coarse sand</td>
</tr>
<tr>
<td></td>
<td>78 coarse sand</td>
</tr>
<tr>
<td></td>
<td>79 medium sand</td>
</tr>
<tr>
<td></td>
<td>80 fine sand</td>
</tr>
<tr>
<td></td>
<td>81 very fine sand</td>
</tr>
<tr>
<td></td>
<td>82 total sand*</td>
</tr>
<tr>
<td></td>
<td>83 silt*</td>
</tr>
<tr>
<td></td>
<td>84 clay*</td>
</tr>
<tr>
<td></td>
<td>85 particle size class</td>
</tr>
<tr>
<td></td>
<td>86 bulk density*</td>
</tr>
<tr>
<td></td>
<td>87 moisture content at various tensions</td>
</tr>
<tr>
<td></td>
<td>88 hydraulic conductivity</td>
</tr>
<tr>
<td></td>
<td>89 infiltration rate</td>
</tr>
<tr>
<td></td>
<td>90 pH H₂O*</td>
</tr>
<tr>
<td></td>
<td>91 pH KCl</td>
</tr>
<tr>
<td></td>
<td>92 electrical conductivity</td>
</tr>
<tr>
<td></td>
<td>93 exchangeable Ca**</td>
</tr>
<tr>
<td></td>
<td>94 exchangeable Mg**</td>
</tr>
<tr>
<td></td>
<td>95 exchangeable Na*</td>
</tr>
<tr>
<td></td>
<td>96 exchangeable K*</td>
</tr>
<tr>
<td></td>
<td>97 exchangeable Al***</td>
</tr>
<tr>
<td></td>
<td>98 exchangeable acidity</td>
</tr>
<tr>
<td></td>
<td>99 CEC soil*</td>
</tr>
<tr>
<td></td>
<td>100 total carbonate equivalent</td>
</tr>
<tr>
<td></td>
<td>101 gypsum</td>
</tr>
<tr>
<td></td>
<td>102 total carbon*</td>
</tr>
<tr>
<td></td>
<td>103 total nitrogen</td>
</tr>
<tr>
<td></td>
<td>104 P₂O₅</td>
</tr>
<tr>
<td></td>
<td>105 phosphate retention</td>
</tr>
<tr>
<td></td>
<td>106 Fe dithionite</td>
</tr>
<tr>
<td></td>
<td>107 Al dithionite</td>
</tr>
<tr>
<td></td>
<td>108 Fe pyrophosphate</td>
</tr>
<tr>
<td></td>
<td>109 Al pyrophosphate</td>
</tr>
<tr>
<td></td>
<td>110 clay mineralogy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFILE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48 profile_ID</td>
<td></td>
</tr>
<tr>
<td>49 profile database_ID</td>
<td></td>
</tr>
<tr>
<td>50 latitude</td>
<td></td>
</tr>
<tr>
<td>51 longitude</td>
<td></td>
</tr>
<tr>
<td>52 elevation</td>
<td></td>
</tr>
<tr>
<td>53 sampling date</td>
<td></td>
</tr>
<tr>
<td>54 lab_ID</td>
<td></td>
</tr>
<tr>
<td>55 drainage</td>
<td></td>
</tr>
<tr>
<td>56 infiltration rate</td>
<td></td>
</tr>
<tr>
<td>57 surface organic matter</td>
<td></td>
</tr>
<tr>
<td>58 classification FAO</td>
<td></td>
</tr>
<tr>
<td>59 classification version</td>
<td></td>
</tr>
<tr>
<td>60 national classification</td>
<td></td>
</tr>
<tr>
<td>61 Soil Taxonomy</td>
<td></td>
</tr>
<tr>
<td>62 phase</td>
<td></td>
</tr>
</tbody>
</table>
5 Additional SOTER conventions

5.1 Introduction

The various conventions described in this chapter form an addition to those characterized in chapter 2. They mainly concern rules governing the minimum size of a SOTER unit, both in absolute and relative terms, as well as criteria determining the selection of representative profiles, relations with associated databases, type of data and missing data.

SOTER database management procedures, such as date stamps and backup procedures, are not treated in this manual, but are to be described in a separate manual (Tempel, in prep.).

5.2 SOTER unit codes

Each SOTER unit is assigned an identifying code that is unique for the database in question. Tentatively, the SOTER coding will consist of a simple numbering system. This code will normally range from 1 to 999, or 9999 for large maps. The terrain components within each terrain unit are given single digit extension numbers separated by a slash (/) and ranked according to the size of the component. A similar single digit extension number is used to code the soil components. This means that a maximum of 10 terrain components (first digit with values from 0-9) each with 10 soil components (second digit) can be stored in the database. The component extension numbers are separated from the SOTER unit code by a slash. The identification code of a soil component in the database thus can range from 1/1 to 9999/99. Numbering is not strictly sequential, as the total number of terrain components per terrain and soil components per terrain component is limited (see chapter 5.4), and identification codes like 1/17 (7 soil components within terrain component 1) or 25/53 (3 soil components in terrain component 5) are unlikely to occur.

When individual databases are merged into regional and global databases, then the SOTER identification codes can be preceded by the ISO code for the country. When databases of neighbouring countries are entered into one database, then cross-boundary SOTER units will have different codes in each country. If a GIS is used the SOTER units of one country can automatically be given the code of their counterpart on the other side of the border (assuming that proper correlation has been carried out), otherwise this has to be done manually.

At national level this coding convention is only applicable to 1:1 million maps. For larger scale maps and databases there is no need to follow a unified system.

5.3 Minimum size of the SOTER unit

As a general rule of thumb the minimum size of a single SOTER unit is 0.25 cm² on the map which, at a scale of 1:1 million, equals 25 km² in the field. This is the smallest area that can still be cartographically represented. Mostly such tiny units will correspond to narrow elongated features (floodplains, ridges, valleys) or strongly contrasting terrain and soil features. In general, SOTER units will be much larger.

If there are gradual changes in landscape features, new SOTER units can be delineated when any one terrain component or soil component of a unit changes in area by more than 50%.
5.4 Number of soil and terrain components

Within a SOTER unit terrain components and soil components can occupy any percentage of the terrain and terrain component respectively, provided the total area of each component is not less than what is indicated in section 5.3. In theory this would allow for an unlimited number of terrain components within each SOTER unit, or soil components within each terrain component. In practice this is unlikely to occur, as many terrain components and soil components cover sizeable areas. SOTER recommends that a minimum area of 15% of the SOTER unit is taken into account when defining terrain and soil components, unless the SOTER unit in question is very large, or it involves strongly contrasting terrain or soil components, when the percentage coverage can be less.

Most commonly it is expected that a SOTER unit would be subdivided into up to 3 or 4 terrain components, each with not more than 3 soil components, resulting in a maximum of 12 subdivisions. Obviously, the proportional areal sum of soil components within each terrain component, and terrain components within each SOTER unit, will always be 100%.

It is advisable that map compilers exercise restraint in subdividing terrain into terrain and soil components. Only those criteria that can be considered important for analyzing a landscape in subsequent interpretations should be selected. Significant changes in attributes such as parent material, surface form and slope gradient, which at the same time should cover substantial areas, qualify as criteria for defining new SOTER units. Terrain components should be split into soil components only if there are clear changes in diagnostic criteria which will reflect in land use or land degradation aspects. Minor changes in any of these criteria should be considered as part of the natural variability that at a scale of 1:1 million can be expected to occur within each SOTER unit. Discretion in defining terrain and soil components is absolutely necessary in order not to generate an excessive number of components and so lengthening the time required for coding, entering and processing of data.

5.5 Representative soil profiles

The representative profile used to typify a specific soil component is chosen from amongst a number of reference profiles with similar characteristics. Where possible SOTER will rely on a selection of reference profiles made by the original surveyors. It is envisaged that all reference profiles taken into consideration be stored in a national soil profile database, preferably based on the FAO-ISRIC Soil Database format. The SOTER database includes a key to national databases.

The SOTER database also includes a code that shows how many reference profiles were considered for the selection of the representative profile, and were used to determine the maximum and minimum values of attributes as well.

5.6 Updating procedures

SOTER units and their attributes are unique in both space and time, and although soil and in particular terrain characteristics are thought to have a high degree of temporal stability, it might become necessary to update certain attributes from time to time. At present, there is no procedure for updates of the geographic data, such as the boundaries of the SOTER units.
However, replacing (parts of) map sheets by more recent maps will involve changes in attribute data as well, for which the guidelines below can be used.

Updating the attribute database could become necessary because of *missing data, incorrect data or obsolete data* in the database. If there are some data gaps, the voids can be filled when additional data becomes available. Incorrect data, which include data that is being replaced by (a set of) more reliable data (e.g. a representative profile is being substituted by another, more representative profile) can be replaced by new data, although a note has to be made of this in the database. In contrast, obsolete data is not simply replaced by more up-to-date information. Instead, old data is downloaded into a special database containing obsolete data, after which the latest data is entered into the regular database. In this way the database with obsolete data can be used for the monitoring of changes over time. When certain parameters are measured at regular intervals, then periodic updating will become necessary.

The SOTER unit Identification code does indicate to which level of differentiation the SOTER unit can be mapped. The database is capable of generating a number of relational data that are pertinent to each SOTER unit, and between the SOTER units (e.g. percentage of each soil component within terrain component or SOTER unit, total area of all terrain components with identical terrain component data code, etc.).

ADDITIONAL CONVENTIONS
6 Attribute coding

Note that the numbers preceding the attributes in table 1 are identical to the numbers of the attributes in this chapter, written in the left margin. They also figure on the SOTER data entry forms (see Annex 5 for a pro forma).

The SOTER unit identification code, referring to the map unit, is completed in the database by two additional digits, separated from the SOTER unit code by a slash. The first digit represents the terrain component number. The second digit constitutes the soil component number. Eventually, the SOTER unit identification code will be the unique identifier for SOTER units on a world-wide scale (see also section 5.2).

However, for compilers of SOTER data on a national or regional scale it is sufficient to attach locally unique identification codes to each SOTER unit, taking into account the coding conventions explained in section 5.2. These identification codes will be converted into globally unique identifiers before entry into a continental or world-wide SOTER database.

Class limits as used in this manual are defined as follows. The upper class limit is included in the next class. E.g. slope class 2-5% (item 9) includes all slopes from 2.0 to 4.9%. Hence, a slope of 5% would fall in slope class 5-8%.

6.1 Terrain

1 SOTER unit_ID

The SOTER unit_ID is the identification code of a SOTER unit on the map and in the database. It links the mapped area to the attributes in the database and in particular, it identifies which terrain belongs to a SOTER unit. SOTER units which have identical attributes carry the same SOTER unit_ID. In other words the SOTER unit_ID is similar to a code for a mapping unit on a conventional soil map.

For each SOTER map, a unique code (up to 4 digits) is assigned to every SOTER unit that has been distinguished. On most SOTER maps 2 or 3 digits will suffice.

2 year of data collection

The year in which the original terrain data were collected will serve as the time stamp for each SOTER unit. Where the SOTER unit has been composed on the basis of several sources of information, it is advisable to use the major source for dating it. In this manner a link between the SOTER unit and the major source of information, which should be listed under map_ID, can easily be made. The year of compiling the data according to the SOTER procedures is thus not recorded, unless the compilation itself has resulted in some major reinterpretation based on additional sources of information, like fresh satellite imagery. In general the year of compilation can be deducted from the year in which the data was entered into the database, as both years are likely to be the same or very close to each other. It is assumed that the year in which the terrain date were collected also applies to the terrain component data, and no separate date entry is required for this.
3 \textit{map ID}

The source map identification code from which the data were derived for the compilation of the SOTER units. There is room for 12 characters.

4 \textit{minimum elevation}

Absolute minimum elevation of the SOTER unit, in metres above sea level. Both the minimum and maximum elevation can be read from a contoured topographic map.

5 \textit{maximum elevation}

Absolute maximum elevation of the SOTER unit, in metres above sea level.

6 \textit{slope gradient}

The dominant slope angle, expressed as a percentage, prevailing in the terrain.

7 \textit{relief intensity}

The relief intensity is the median difference between the highest and lowest point within the terrain per specified distance. This specified distance can be variable, but is expressed in m/km in the database.

8 \textit{major landform}

Landforms are described foremost by their morphology and not by their genetic origin, or processes responsible for their shape. The dominant slope is the most important differentiating criterion, followed by the relief intensity. The relief intensity is normally given in meters per kilometer, but for distinction between hills and mountains it is practical to use two kilometer intervals (see table 2).

At the highest level of landform separation, suitable for scales equal to or smaller than 1:10 million, four groups are being distinguished (adapted from Remmelzwaal, 1991). They can be subdivided when the position of the landform vis-a-vis the surrounding land is taken into consideration.

Where not clear from the gradient or relief intensity, the distinction between the various second level landforms follows from the description in Annex 1.
<table>
<thead>
<tr>
<th>1st level</th>
<th>2nd level</th>
<th>gradient (%)</th>
<th>relief intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L level land</td>
<td>LP plain</td>
<td><8</td>
<td><100m/km</td>
</tr>
<tr>
<td></td>
<td>LL plateau</td>
<td><8</td>
<td><100m/km</td>
</tr>
<tr>
<td></td>
<td>LD depression</td>
<td><8</td>
<td><100m/km</td>
</tr>
<tr>
<td></td>
<td>LF low-gradientfootslope</td>
<td><8</td>
<td><100m/km</td>
</tr>
<tr>
<td></td>
<td>LV valley floor</td>
<td><8</td>
<td><100m/km</td>
</tr>
<tr>
<td>S sloping land</td>
<td>SM medium-gradientmountain</td>
<td>15-30</td>
<td>>600m/2km</td>
</tr>
<tr>
<td></td>
<td>SH medium-gradienthill</td>
<td>8-30</td>
<td>>50m/slope unit</td>
</tr>
<tr>
<td></td>
<td>SE medium-gradientescarpmentzone</td>
<td>15-30</td>
<td>>600m/2km</td>
</tr>
<tr>
<td></td>
<td>SR ridges</td>
<td>8-30</td>
<td>>50m/slope unit</td>
</tr>
<tr>
<td></td>
<td>SU mountainoushighland</td>
<td>8-30</td>
<td>>600m/2km</td>
</tr>
<tr>
<td></td>
<td>SP dissectedplain</td>
<td>8-30</td>
<td><50m/slope unit</td>
</tr>
<tr>
<td>T steep land</td>
<td>TM high-gradientmountain</td>
<td>>30</td>
<td>>600m/2km</td>
</tr>
<tr>
<td></td>
<td>TH high-gradienthill</td>
<td>>30</td>
<td><600m/2km</td>
</tr>
<tr>
<td></td>
<td>TE high-gradientescarpmentzone</td>
<td>>30</td>
<td>>600m/2km</td>
</tr>
<tr>
<td></td>
<td>TV highgradientvalleys</td>
<td>>30</td>
<td>var.</td>
</tr>
<tr>
<td>C land with composite landforms</td>
<td>CV valley</td>
<td>>8</td>
<td>var.</td>
</tr>
<tr>
<td></td>
<td>CL narrow plateau</td>
<td>>8</td>
<td>var.</td>
</tr>
<tr>
<td></td>
<td>CD major depression</td>
<td>>8</td>
<td>var.</td>
</tr>
</tbody>
</table>

Notes: var. = variable.

REGIONAL LANDFORMS

Major landforms can be further characterized according to three criteria. These are:

1. regional slope
2. hypsometry
3. dissection

The differentiating power of these criteria is highest with respect to level lands, although they can be used for sloping lands with a relief intensity of less than 600 m/2 km as well. For steep lands with a high relief intensity they have little utility, with the exception of the hypsometric level.

9 **regional slope**

A refining of slope classes compared to those used for major landforms is possible. The dominant slopes can be broken down into the following classes:

a) Simple landforms

W 0-2 % flat, wet*

F 0-2 % flat

G 2-5 % gently undulating

U 5-8 % undulating

* attribute coding
R 8-15 % rolling
S 15-30 % moderately steep
T 30-60 % steep
V ≥ 60 % very steep

* wet is defined as < 90% permanent water surface > 50% (see also item 12)

b) Complex landforms**

CU Cuestashaped
DO Dome-shaped
RI Ridged
TE Terraced
IN Inselberg covered (occupying at least 1% of level land)
DU Dune-shaped
IM With intermontane plains (occupying at least 15%)
WE With wetlands (occupying at least 15%)
KA Strong karst

** in the case of complex landforms, the protruding landform should be at least 25 m high (if not it is to be considered mesorelief) except for terraced land, where the main terraces should have elevation differences of at least 10 m.

These subdivisions are mainly applicable to level landforms, and to some extent to sloping landforms. They are not to be used for steep lands, except in the case of mountains with intermontane plains, but may be used for lands with complex landforms, where the subdivision can be related to the constituent landform with the lesser slope.

10 hypsometry

The hypsometric level is, for level and slightly sloping land (relief intensity of less than 50 m) an indication of the height above sea level of the local base level. For lands with a relief intensity of more than 50 m the hypsometric is used to indicate the height above the local base (i.e. local relief).
a) Level lands and sloping lands (relief intensity < 50 m/slope unit)

1 < 300 m very low level (plain etc.)
2 300-600 m low level
3 600-1500 m medium level
4 1500-3000 m high level
5 ≥ 3000 m very high level

b) Sloping lands (relief intensity > 50 m/slope unit)

6 < 200 m low (hills etc.)
7 200-400 m medium
8 ≥ 400 m high

c) Steep and sloping lands (relief intensity > 600 m/2 km)

9 600-1500 m low (mountains etc.)
10 1500-3000 m medium
11 3000-5000 m high
12 ≥ 5000 m very high

dissection

The degree of dissection is difficult to quantify in a practical manner. Factors like coverage, slope and depth of dissected features all contribute to the intensity of landscape dissection. SOTER uses the drainage density as a qualitative measure of the degree of dissection. The higher the drainage density, the more dissected a tract of land is, and in general also the steeper the slopes of the dissected parts will be. The depth of dissection can be assumed to increase with an increased density of the drainage network and steeper landscape slopes. Conversely, a high drainage density on very flat land (dominant slopes < 2%) is not necessarily related to the dissection of the terrain, but could be an indication of the wetness of the land.

The most accurate way to measure the drainage density (defined as the average length of drainage channels per unit area of land, expressed as km km²) is to actually measure the length of all well-defined, permanent and seasonal, streams and rivers within a representative block. This should be done on good quality 1:50,000 or larger maps. Techniques exist to speed up this measurement through intersection point counting (Verhasselt, 1961).
In practice the necessary material to carry out this measurement is often not available, and only quantitative estimates can be made. This should be done with aid of the most detailed material available (maps, aerial photos or satellite images). Only three classes are being distinguished:

1. $< 10 \text{ km km}^{-2}$ slightly dissected
2. 10-25 km km$^{-2}$ dissected
3. $\geq 25 \text{ km km}^{-2}$ strongly dissected

Figure 9 provides an illustration, at a scale of 1:50,000, of two of these classes. The degree of dissection is not applicable to land with a relief intensity of more than 600 m.

![Figures showing different degrees of dissection](image)

Figure 9 Examples of degrees of dissection as indicated by drainage density on 1:50,000 maps.

12 general lithology

For each SOTER unit a generalized description of the consolidated or unconsolidated surficial material, underlying the larger part of the terrain, is given. Major differentiating criteria are petrology and mineralogical composition (Holmes, 1968, Strahler, 1969). At the 1:1 million scale the lithology should at least be specified down to group level. Codes are shown in table 3.

13 permanent water surface

Indicate the percentage of the SOTER unit that is largely (i.e. $> 90\%$, thus excluding small islands etc.) permanently (i.e. more than 10 month/year) covered by water. Bodies of water large enough to be delineated on the map are not considered part of a SOTER unit.
Table 3 Hierarchy of lithology.

<table>
<thead>
<tr>
<th>major class</th>
<th>group</th>
<th>type</th>
</tr>
</thead>
</table>
| I | IA | IA1 granite
| | | IA2 grano-diorite
| | | IA3 quartz-diorite
| | | IA4 rhyolite
| | II | II1 andesite, trachyte, phonolite
| | | II2 diorite-syenite
| | IB | IB1 gabbro
| | | IB2 basalt
| | | IB3 dolerite
| | IU | IU1 peridotite
| | | IU2 pyroxenite
| | | IU3 ilmenite, magnetite, ironstone, serpentine
| M | MA | MA1 quartzite
| | | MA2 gneiss, migmatite
| | MB | MB1 slate, phyllite (pelitic rocks)
| | | MB2 schist
| | | MB3 gneiss rich in ferro-magnesian minerals
| | | MB4 metamorphic limestone (marble)
| S | SC | SC1 conglomerate, breccia
| | | SC2 sandstone, greywacke, arkose
| | | SC3 siltstone, mudstone, claystone
| | | SC4 shale
| | SO | SO1 limestone, other carbonate rocks
| | | SO2 marl and other mixtures
| | | SO3 coals, bitumen & related rocks
| | SE | SE1 anhydrite, gypsum
| | | SE2 halite
| | UF | fluvial
| | UL | lacustrine
| | UM | marine
| | UC | colluvial
| | UE | eolian
| | UG | glacial
| | UP | pyroclastic
| | UO | organic

6.2 Terrain component

This section includes attributes to identify any terrain component, its percentage within the SOTER unit (15-100%) and a link to the complete set of attribute data of a terrain component (chapter 6.3).
14 SOTER unit_ID

See SOTER unit_ID under paragraph 6.1 Terrain.

15 terrain component number

The sequence number of the terrain component in the terrain. The largest terrain component in the SOTER unit comes first, followed by the second in size, and so on. The combination SOTER unit_ID and terrain component number (e.g. 2034/1) gives the complete identification code for each terrain component within the database.

16 proportion of SOTER unit

The proportion that the terrain component occupies within the SOTER unit. As stated in chapter 5.4, a terrain component normally covers not less than 15% of the terrain. The sum of all terrain components should be 100%.

Examples

<table>
<thead>
<tr>
<th>SOTER unit_id = 2034,</th>
<th>SOTER unit_id = 2034</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrain component number = 1</td>
<td>terrain component number = 2</td>
</tr>
<tr>
<td>proportion within SU = 70%</td>
<td>proportion within SU = 30%</td>
</tr>
</tbody>
</table>

17 terrain component data_ID

If two (or more) terrain components are completely similar, then their data will only be entered once in the database. The data code has the format SOTER unit_ID/terrain

Examples

- case A (two terrain components, both not yet described in the attribute database)

<table>
<thead>
<tr>
<th>SOTER unit_ID = 2034,</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrain component number = 1</td>
</tr>
<tr>
<td>proportion within SU = 70%</td>
</tr>
<tr>
<td>terrain component data_ID= 2034/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTER unit_ID = 2034</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrain component number = 2</td>
</tr>
<tr>
<td>proportion within SU = 30%</td>
</tr>
<tr>
<td>terrain component data_ID= 2034/2</td>
</tr>
</tbody>
</table>

- case B (two terrain components, one already described (marked with *), one not yet)

<table>
<thead>
<tr>
<th>SOTER unit_ID = 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrain component number = 1</td>
</tr>
<tr>
<td>proportion within SU = 60%</td>
</tr>
<tr>
<td>terrain component data_ID= 2034/2*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTER unit_ID = 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrain component number = 2</td>
</tr>
<tr>
<td>proportion within SU = 40%</td>
</tr>
<tr>
<td>terrain component data_ID= 2035/2</td>
</tr>
</tbody>
</table>
component number. When referring to an already described terrain component data ID the first terrain component with a particular attribute content will also be used for subsequent identical terrain components. In case a terrain component has not been described before in the database, then its code will also be used as its data code (four plus one digits).

6.3 Terrain component data

18 terrain component data ID

See terrain component data ID under chapter 6.1.

SLOPE CHARACTERISTICS

Items 19-21 characterize the slope of the terrain component.

19 dominant slope

Dominant slope gradient of the terrain component, %.

20 length of slope (m)

Estimated dominant length of slope, m.

21 form of slope

The form of the dominant slope (only entered if the dominant slope gradient > 2%)

U Uniform slope.

C Concave, lower slope with decreasing gradient downslope.

V Convex, upper slope with decreasing gradient upslope.

I Irregular slope.

MESO-RELIEF

Items 22-24 characterize the meso-relief or local surface forms.
22 local surface form

A number of characteristic meso-relief or local surface forms can be recognised at the 1:1 million scale (Day, 1983; FAO, 1977; Soil Survey Staff, 1951), in addition to the slope form as listed below (this list is not exhaustive).

H hummocky very complex pattern of slopes extending from somewhat rounded depressions or kettleholes of various sizes to irregular conical knolls or knobs. There is a general lack of concordance between knolls or depressions. Slopes ranges are large and vary generally between 4 % and 70 %.

M mounded coverage (at least 5 %) by isolated mounds more than 2.5 m high.

K towered coverage (at least 5 %) by isolated steep sided karst towers more than 2.5 m high.

R ridged coverage (at least 5 %) by parallel, sub-parallel or intersecting usually sharpcrested ridges (elongated narrow elevations) more than 2.5 m high.

T terraced level areas (less than 2 % slope) bounded on one side by a steep slope more than 2.5 m high with another flat surface above it.

G gullied coverage (at least 5 %) by steep-sided gullies more than 2.5 m deep.

S strongly areas with a drainage density of more than 25 km km⁻², the depth dissected dissected of the drainage lines being at least 2.5 m.

D dissected areas with a drainage density of more than 10 km km⁻², the depth of the drainage lines being at least 2.5 m.

L slightly areas with a drainage density of less than 10 km km⁻², the depth of the dissected drainage lines being at least 2.5 m.

23 average height

The average height of the meso-relief (or depth where applicable) in metres, depth being indicated by a minus sign.

24 coverage

The estimated percentage coverage of the meso-relief elements within the terrain component

25 lithology surficial material

Description of the consolidated or unconsolidated surficial materials which underly most of the terrain component. These include the types of rockmass from which parent material is derived, and other unconsolidated mineral or organic deposits. The same list of parent materials is used as was given for the terrain unit lithology (see table 3). If the type level of
parent material, already indicated at terrain level, does not vary then no further entry has to be made here.

26 texture of non-consolidated parent material

The texture group of particles <2 mm of the non-consolidated parent material, or the parent material at 2 m if the soil is deeply developed, is given. Figure 10 shows the different groups in a texture triangle.

![Texture Triangle Diagram]

Figure 12 Texture groups of parent material.

- **Y** very clayey: more than 60% clay
- **C** clayey: sandy clay, silty clay and clay texture classes
- **L** loamy: loam, sandy clay loam, clay loam, silt, silt loam and silty clay loam texture classes
- **S** sandy: loamy sand and sandy loam texture classes
- **X** extremely sandy: sand texture classes

27 depth to bedrock

The average depth to consolidated bedrock in metres. For depths more than 10 m the depth can be given to the nearest 5 metres.

28 surface drainage

Surface drainage of the terrain component (after Cochrane et al., 1985 and Van Waveren et al., 1987).
E extremely slow
water ponds at the surface, and large parts of the terrain are
waterlogged for continuous periods of more than 30 days

S slow
water drains slowly, but most of the terrain does not remain
waterlogged for more than 30 days continuously

W well
water drains well but not excessively, nowhere does the terrain
remain waterlogged for a continuous period of more than 48 hours

R rapid
excess water drains rapidly, even during periods of prolonged
rainfall

V very rapid
excess water drains very rapidly, the terrain does not support growth
of short rooted plants even if there is sufficient rainfall

29 depth of groundwater

The depth in metres of the mean ground water level over a number of years as experienced
in the terrain component.

FLOODING

Flooding is characterized by items 30-32:

30 frequency

Frequency of the natural flooding of the terrain component in classes after FAO (1990).

N none
D daily
W weekly
M monthly
A annually
B biennially
F once every 2-5 years
T once every 5-10 years
R rare (less than once in every 10 years)
U unknown
31 duration

Duration of the flooding of the terrain component in classes after FAO (1990).

1 less than 1 day
2 1-15 days
3 15-30 days
4 30-90 days
5 90-180 days
6 180-360 days
7 continuously

32 start

Give the month (indicated by a figure) during which flooding of the terrain component normally starts. Three entries are possible.

6.4 Soil component

This section includes, besides the SOTER identification codes, all the attributes of the soil component (items 33 to 47). General attributes linked to the representative soil profile and horizon attributes are dealt with in the next chapters (6.5 and 6.6).

33 SOTER unit_ID

See SOTER unit_ID under chapter 6.1 Terrain. The SOTER unit_ID given in the terrain chapter should also be used here.

34 terrain component number

See terrain component number under chapter 6.2 Terrain component. The terrain component number given in the terrain component chapter should also be used here.

35 soil component number

The sequence number of the soil within the terrain component according to the ranking of the soil component within the terrain component (the largest soil component is given number 1, the second largest number 2, etc.). Soil components are the lowest level of differentiation of the SOTER units.
36 proportion of SOTER unit

The proportion that the soil component occupies within the SOTER unit. As stated in chapter 5.4, a soil component normally occupies not less than 15% of the terrain. The sum of all soil components should be 100% for each SOTER unit.

37 profile_ID

Code for the representative profile. Any national code is permitted provided it is unique at a national level. An ISO country code (see Annex 4) should precede the national code. There is room for 12 characters.

38 number of reference profiles

The number of reference profiles that were considered for the selection of the representative profile is indicated. These profiles have also contributed to the determination of maximum and minimum values for a number of chemical and physical parameters of the soil.

39 position in terrain component

The relative position of the soil component within the terrain component is characterized by one of the following descriptions:

H high interfluve, crest or higher part of the terrain component
M middle upper and middle slope or any other medium position within the terrain component
L low lower slope or lower part of the terrain component
D lowest depression, valley bottom or any other lowest part of the terrain component
A all all positions within the terrain component

40 surface rockiness

The percentage coverage of rock outcrops according to the following classes (FAO, 1990):
N none 0 %
V very few 0- 2 %
F few 2- 5 %
C common 5-15 %
M many 15-40 %
A abundant 40-80 %
D dominant ≥ 80 %

41 surface stoniness

The percentage cover of coarse fragments (> 0.2 cm), completely or partly at the surface, is described according to the following classes (FAO, 1990):

N none 0 %
V very few 0- 2 %
F few 2- 5 %
C common 5-15 %
M many 15-40 %
A abundant 40-80 %
D dominant ≥ 80 %

OBSERVABLE EROSION

Any visible signs of (accelerated) erosion are to be indicated according to type, area affected and degree. If more than two types of erosion are active at the same time, then only the dominant type is indicated (items 42-44).

42 types of erosion/deposition

Characterization of the erosion or deposition type according to FAO (1990):

N no visible evidence of erosion
S sheet erosion
R rill erosion
G gully erosion
T tunnel erosion
P deposition by water
W water and wind erosion
L wind deposition
A wind erosion and deposition
D shifting sand
Z salt deposition
U type of erosion unknown

43 area affected

The area affected by the above mentioned erosion. Classes according to UNEP-ISRIC (1988).

1 0-5 %
2 5-10 %
3 10-25 %
4 25-50 %
5 ≥ 50 %

44 degree of erosion

After FAO (1990).

S slight Some evidence of loss of surface horizons. Original biofunctions largely intact.

M moderate Clear evidence of removal or coverage of surface horizons. Original biofunctions partly destroyed.

V severe Surface horizons completely removed (with subsurface horizons exposed) or covered up by sedimentation of material from upslope. Original biofunctions largely destroyed.
Extreme Substantial removal of deeper subsurface horizons (badlands). Complete destruction of original biofunctions.

45 sensitivity to capping

The degree in which the soil surface has a tendency to capping and sealing (FAO, 1990):

- **N** none no capping or sealing observed
- **W** weak the soil surface has a slight sensitivity to capping. Soft or slightly hard crust less than 0.5 cm thick.
- **M** moderate the soil has a moderate sensitivity to capping. Soft or slightly hard crust more than 0.5 cm thick, or hard crust less than 0.5 cm thick.
- **S** strong the soil surface has a strong sensitivity to capping. Hard crust more than 0.5 cm thick.

46 rootable depth

Estimated depth in cm to which root growth is unrestricted by any physical or chemical impediment, such as an impenetrateable or toxic layer. Strongly fractured rocks, such as shales, may be considered as rootable. Classes after FAO (1990).

- **V** very shallow < 30 cm
- **S** shallow 30- 50 cm
- **M** moderately deep 50-100 cm
- **D** deep 100-150 cm
- **X** very deep ≥ 150 cm

47 relation with other soil components

A free-format space of 254 characters is available to indicate succinctly the relationship between this soil component and adjoining soil components. Up to 254 characters are permitted.

E.g.: "Soil component A has formed in colluviated material derived from soil component B".
6.5 Profile

48 *profile_ID*

Same as profile_ID in chapter 6.4 Soil component.

49 *profile database_ID*

The identification code for the owner, institute or organisation that holds (part of) the national soil profile database. The code consists of an ISO code for the country (see annex 4) and a sequence number (see also chapter 8.3).

LOCATION OF THE REPRESENTATIVE PROFILE

The latitude and longitude, as accurate as possible, and expressed in decimal degrees. A profile of which the approximate location (i.e. accurate to the nearest full minute) is not known cannot be accepted in the SOTER database.

50 *latitude*

The latitude is stored in decimal degrees north. Latitudes in the southern hemisphere are negative.

51 *longitude*

The longitude is stored in decimal degrees east. Longitudes in the western hemisphere are negative.

52 *elevation*

The elevation of the representative profile in metres above sea level, and at least indicated to the nearest 50 m contour (if this is not possible, no entry should be made).

53 *sampling date*

The date at which the profile was described and sampled. In case these two activities were carried out on different dates, the date of sampling should be taken. The format is MM/YYYY.

54 *lab_ID*

The ISRIC ID code for the soil laboratory that analyzed the samples: ISO country code followed by a sequence number.
drainage

The present drainage of the soil component is described according to one of the classes mentioned below (after FAO, 1990).

E excessively drained Water is removed from the soil very rapidly.

S somewhat excessively drained Water is removed from the soil rapidly.

W well drained Water is removed from the soil readily but not rapidly.

M moderately well drained Water is removed from the soil somewhat slowly during some periods of the year. The soils are wet for short periods within rooting depth.

I imperfectly drained Water is removed slowly so that the soils are wet at shallow depth for a considerable period.

P poorly drained Water is removed so slowly that the soils are commonly wet for considerable periods. The soils commonly have a shallow water table.

V very poorly drained Water is removed so slowly that the soils are wet at shallow depth for long periods. The soils have a very shallow water table.

infiltration rate

The basic infiltration rate, in cm/h, is indicated according to the following 7 categories (BAI, 1991).

V very slow < 0.1 cm/h

S slow 0.1- 0.5 cm/h

D moderately slow 0.5- 2.0 cm/h

M moderate 2.0- 6.0 cm/h

R rapid 6.0-12.5 cm/h

Y very rapid 12.5-25.0 cm/h

E extremely rapid ≥ 25 cm/h

surface organic matter

Any litter or other organic matter on the surface will be described according to thickness (in cm) and degree of decomposition (Soil Survey Staff, 1975):
F fibric weakly decomposed organic soil material (fibre content >2/3 of volume)

H hemic degree of decomposition intermediate between fibric and sapric (fibre content between 1/6 and 2/3 of volume)

S sapric highly decomposed organic soil material (fibre content <1/6 of volume)

58 classification

Characterisation of profile according to the revised FAO-Unesco Soil Map of the World Legend (FAO, 1988). The codes as given in this publication will be entered (see also FAO, 1989). Where possible the characterization should be up to subunit level.

59 classification version

The year of publication of the version of the FAO Legend used for the characterization.

60 national classification

The original national classification of the representative profile if different from item 58. Up to 12 characters are permitted.

61 Soil Taxonomy

Only the Soil Taxonomy classification (for codes see FAO, 1989) for representative profiles as is indicated in the national database or relevant report, is given. No entry will be made for soil profiles that were not originally classified according to Soil Taxonomy.

62 phase

Any potentially limiting factor related to surface or subsurface features of the terrain, and not already specifically described in the soil profile, can be made a phase (see FAO, 1989). The coding for phases currently used by FAO is given in the FAO-ISRIC Soil Database (FAO, 1989). A note should be made on the code for new phases recognised.

6.6 Horizon data

This section provides the attributes for the various horizons that have been distinguished in the representative soil profile. In general, no more than 5 horizons should be described. Mandatory attributes must always be completed. If these data are not available, expert estimates are required. Expert estimates are also permitted for optional attributes. Measured data are entered as an actual value for the representative profile, and as maximum and minimum values derived from all the reference profiles of the soil component. Mandatory attributes are marked both in table 1 and in the text.
63 profile_ID (mandatory)

Same as profile_ID in chapters 6.4 and 6.5.

64 horizon number (mandatory)

A consecutive number, starting with the surface horizon, is allocated to each horizon.

65 diagnostic horizon (mandatory)

Descriptions are taken from the Revised Legend of the FAO/Unesco Soil Map of the World (FAO, 1988). For more precise definitions refer to this publication.

HI histic

An horizon which is more than 20 cm but less than 40 cm thick. It can be more than 40 cm but less than 60 cm thick if it consists of 75 percent or more, by volume, of sphagnum fibres or has a bulk density when moist of less than 0.1 kg.dm\(^{-3}\). A surface layer less than 25 cm thick qualifies as a histic horizon if, after having been mixed to a depth of 25 cm, it has 16% or more organic carbon and the mineral fraction contains more than 60% clay, or 8% or more organic carbon for intermediate contents of clay.

MO mollic

A horizon with the following properties for the upper 18 cm:
1) the soil structure is sufficiently strong that the horizon is not both massive and hard or very hard when dry. Very coarse prisms larger than 30 cm in diameter are included in the meaning of massive if there is no secondary structure within the prisms.
2) the chroma is less than 3.5 when moist, the value darker than 3.5 when moist and 5.5 when dry; the colour value is at least one unit darker than that of the C (both moist and dry). If a C horizon is not present, comparison should be made with the horizon immediately underlying the A horizon. If there is more than 40% finely divided lime, the limits of the colour value dry are waived; the colour value moist should then be 5 or less.
3) the base saturation (by NH\(_4\)OAc) is 50% or more
4) the organic carbon content is at least 0.6% throughout the thickness of mixed soil, as specified below. It is at least petrocalcic or a petrogypsic horizon or a petroferric phase.

FI fimbic

A man made surface layer 50 cm or more thick which has been produced by long continued manuring with earthy mixtures. If a fimbic horizon meets the requirements of the mollic or umbric horizon, it is distinguished from it by an acid-extractable P\(_2\)O\(_5\) content which is higher than 250 mg.kg\(^{-1}\) soil by 1 percent citric acid. Examples are the plaggen epipedon and the anthropic epipedon of Soil Taxonomy.

UM umbric

Comparable to mollic in colour, organic carbon and phosphorus content, consistency, structure and thickness. However, the base saturation is less than 50%.
OC ochric The horizon is too light in colour, has too high a chroma, too little organic carbon, or is too thin to be a mollic or umbric, or is both hard and massive when dry. Finely stratified materials do not qualify as an ochric horizon, e.g. surface layers of fresh alluvial deposits.

AR argic A subsurface horizon which has a distinctly higher clay content than the overlying horizon. This difference may be due to an illuvial accumulation of clay, or to a destruction of clay in the surface horizon, or to a selective surface erosion of clay, or to biological activity or to a combination of two or more of these different processes. Sedimentation of surface materials, which are coarser than the subsurface horizon, may enhance a pedogenic textural differentiation. However, a mere lithological discontinuity, such as may occur in alluvial deposits, does not qualify as an argic horizon. When an argic horizon is formed by clay illuviation, clay skins may occur on ped surfaces, in fissures, in pores, and in channels. The texture must be sandy loam or finer with at least 8% clay.

NA natric An argic horizon with
1) a columnar or prismatic structure in some part of the horizon, or a blocky structure with tongues of an eluvial horizon in which there are uncoated silt or sand grains extending more than 2.5 cm into the horizon, and
2) an exchangeable sodium percentage of more than 15% within the upper 40 cm of the horizon; or more exchangeable magnesium plus sodium than calcium plus exchange acidity within the upper 40 cm of the horizon if the saturation with exchangeable sodium is more than 15% in some subhorizon within 200 cm of the surface.

CB cambic An altered horizon lacking properties that meet the requirements of an argic, natric or spodic horizon; lacking the dark colours, organic matter content and structure of the histic horizon, or the mollic and umbric horizons. The texture is sandy loam or finer, with at least 8% of clay; the thickness is at least 15 cm with the lower depth at least 25 cm below the surface; soil structure is at least moderately developed or rock structure is absent in at least half the volume of the horizon; the CEC is more than 160 mmol(+)/kg clay, or the content of weatherable minerals in the 0.050 to 0.200 mm fraction is 10% or more; the horizon shows alteration in a) stronger chroma, redder hue, or higher clay content than the underlying horizon, or b) evidence of removal of carbonates, or c) if carbonates are absent in the parent material and in the dust that falls on the soil, the required evidence of alteration is satisfied by the presence of soil structure and the absence of rock structure in more than 50% of the horizon; shows no cementation, induration or brittle consistence when moist.

SP spodic A spodic horizon meets one of the following requirements below a depth of 12.5 cm:
1) a subhorizon more than 2.5 cm thick that is continuously cemented by a combination of organic matter with iron and/or aluminium
2) a sandy or coarse-loamy texture with distinct dark pellets of coarse silt size or larger or with sand grains covered with cracked coatings which consist of organic matter and aluminium with or without iron.

SOTER MANUAL
3) one or more subhorizons in which a) if there is 0.1% or more extractable iron, the ratio of iron plus Al extractable by pyrophosphate at pH 10 to clay% is 0.2 or more, or if there is less than 0.1% extractable iron, the ratio of Al plus organic carbon to clay is 0.2 or more; and b) the sum of pyrophosphate-extractable Fe+Al is half or more of the sum of dithionite-citrate extractable Fe+Al; and c) the thickness is such that the index of accumulation of amorphous material in the subhorizons that meet the preceding requirements is 65 or more. This index is calculated by subtracting half the clay% from CEC at pH 8.2 mmol/kg clay and multiplying the remainder by the thickness of the subhorizon in cm. The results of all subhorizons are then added.

FA ferralic
The ferralic horizon has a texture that is sandy loam or finer with at least 8% of clay; is at least 30 cm thick; has a CEC equal to or less than 160 mmol/kg clay or has an effective CEC equal to or less than 120 mmol/kg clay (sum of NH₄OAc exchangeable bases plus 1M KCl-exchangeable acidity); has less than 10% weatherable minerals in the 0.050 to 0.200 mm fraction; has less than 10% water-dispersible clay; has a silt-clay ratio which is 0.2 or less; does not have andic properties; has less than 5% by volume showing rock structure.

CA calcic
A horizon of accumulation of calcium carbonate. The horizon is enriched with secondary calcium carbonate over a thickness of 15 cm or more, has a calcium carbonate content of 15% or more and at least 5% greater than that of a deeper horizon. The latter requirement is expressed by volume if the secondary carbonates in the calcic horizon occur as pendants on pebbles, or as concretions or soft powdery forms. If such a calcic horizon rests on very calcareous materials (40% or more calcium carbonate equivalent), the percentage of carbonates need not decrease with depth.

PC petrocalcic
A continuous cemented or indurated calcic horizon, cemented by calcium carbonate and in places by calcium and some magnesium carbonate. Accessory silica may be present. The petrocalcic horizon is continuously cemented to the extent that dry fragments do not slake in water and roots cannot enter. It is massive or platy, extremely hard when dry so that it cannot be penetrated by spade or auger, and very firm to extremely firm when moist. Noncapillary pores are filled; hydraulic conductivity is moderately slow to very slow. It is usually thicker than 10 cm.

GY gypsic
The gypsic horizon is enriched with secondary calcium sulphate (CaSO₄·2H₂O), is 10 cm or more thick, has at least 5% more gypsum than the underlying horizon, and the product of the thickness (cm) and the percent of gypsum is 150 or more.

PG petrogypsic
A gypsic horizon that is so cemented with gypsum that dry fragments do not slake in water and roots cannot enter. The gypsum content usually exceeds 60%.

SU sulphuric
The sulphuric horizon forms as a result of artificial drainage and oxidation of mineral or organic materials which are rich in sulphides. It is at least 15 cm thick and characterized by a pH-H₂O less than 3.5 and generally
has jarosite mottles with a hue of 2.5Y or more and a chroma of 6 or more.

AL albic

Clay and free iron oxides have been removed, or the oxides have been segregated to the extent that the colour of the horizon is determined by the colour of the primary sand and silt particles rather than by coatings of these particles. An albic horizon has a colour value moist of 4 or more, or a value dry of 5 or more, or both. If the value dry is 7 or more, or the value moist is 6 or more, the chroma is 3 or less. If the value dry is 5 or 6, or the value moist 4 or 5, the chroma is closer to 2 than to 3. If the parent materials have a hue of 5YR or redder, a chroma moist of 3 is permitted in the albic horizon where the chroma is due to the colour of uncoated silt or sand grains.

66 diagnostic property (mandatory)

Diagnostic properties (FAO, 1988).

TC abrupt textural change

A clay increase between two layers, which takes place over a distance of less than 5 cm, where the lower layer shows a clay content of twice the clay content of the overlying layer if the latter has less than 20% clay, or an increase of 20% or more if the latter has 20% clay or more.

AD andic properties

Soil materials which meet one or more of the following requirements:

1) acid oxalate extractable Al plus 1/2 acid oxalate extractable Fe is 2.0% or more in the fine earth fraction; bulk density of the fine earth fraction, measured in the field moist state, is 0.9 kg/dm³ or less; phosphate retention is more than 85%.

2) more than 60% by volume of the whole soil is volcani-clastic material coarser than 2 mm; acid oxalate extractable Al plus 1/2 acid oxalate extractable Fe is 0.40% or more in the fine earth fraction.

3) the 0.02 to 2.0 mm fraction is at least 30% of the fine earth fraction and meets one of the following: a) if the fine earth fraction has acid oxalate extractable Al plus 1/2 acid oxalate extractable Fe of 0.40% or less, there is at least 30% volcanic glass in the 0.02 to 2.0 mm fraction; or b) if the fine earth fraction has acid oxalate extractable Al plus 1/2 acid oxalate extractable Fe of 2.0% or more, there is at least 5% volcanic glass in the 0.02 to 2.0 mm fraction; or c) if the fine earth fraction has acid oxalate extractable Al plus 1/2 acid oxalate extractable Fe of between 0.40 and 2.0%, there is a proportional content of volcanic glass in the 0.02 to 2.0 mm fraction between 30 and 5%.

CO calcareous

Soil material which shows strong effervescence with 10% HCl or which contains more than 2% calcium carbonate equivalent.

CA calcaric

Soils which are calcareous throughout the depth between 20 and 50 cm.

RO continuous hard rock

The underlying material is sufficiently coherent and hard when moist to make hand digging with a spade impracticable. The material is continuous except for a few cracks produced in place without significant displace-
ment of the pieces and horizontally distant to an average of 10 cm or more. The material considered here does not include subsurface horizons such as a duripan, a petrocalcic or a petrogypsic horizon or a petroferric phase.

FA ferralic properties
The term 'ferralic properties' is used in connection with Cambisols and Arenosols which have a CEC of less than 240 mmol(+) /kg clay or less than 40 mmol(+) /kg soil in at least one subhorizon of the cambic horizon or the horizon immediately underlying the A horizon.

FI ferric properties
Many coarse mottles with hues redder than 7.5YR or chroma more than 5 or both; discrete nodules, up to 2 cm in diameter, the exteriors of the nodules being enriched and weakly cemented or indurated with Fe and having redder hues or stronger chromas than the interiors (Luvisols, Alisols, Lixisols and Acrisols).

FL fluvic properties
Fluvatile, marine and lacustrine sediments, which receive fresh materials at regular intervals, and which, unless compacted, have one or both of the following properties: 1) an organic carbon content that decreases irregularly with depth or that remains above 0.20% to a depth of 125 cm. Thin strata of sand may have less organic carbon if the finer sediments below, exclusive of buried horizons, meet the requirement; 2) stratification in at least 25% of the soil within 125 cm of the surface.

GE geric properties
Soil materials which have either: 1) 1.5 cmol(+) kg\(^{-1}\) clay or less of exchangeable bases (Ca, Mg, K, Na) plus unbuffered 1M KCl exchangeable acidity; or 2) a delta pH (pH KCl minus pH H\(_2\)O) of +0.1 or more.

GL gleivic and stagnic properties
Soil materials which are saturated with water at some period of the year, or throughout the year, in most years, and which show evidence of reduction processes or of reduction and segregation of iron.

GY gypsiferous
Soil material which contains 5% or more gypsum.

IN inter fingering
Penetrations of an albic horizon into an underlying argic or natric horizon along ped faces, primarily vertical faces. The penetrations are not wide enough to constitute tonguing, but form continuous skeleton (ped coatings of clean silt or sand, more than 1 mm thick on the vertical ped faces).

NI nitic properties
Soil material that has 30% or more clay, has a moderately strong angular blocky structure which falls easily apart into flat edged ('polyhedric' or 'nutty') elements which show shiny ped faces that are either thin clay coatings or pressure faces. This soil structure is apparently associated with the presence of significant amounts of active iron oxides and is indicative of a high effective moisture storage and favourable phosphate sorption - desorption properties.
OR	organic soil materials	Organic soil materials are: 1) saturated with water for long periods or are artificially drained and, excluding live roots, a) have 18% or more organic carbon if the mineral fraction is 60% or more clay, b) have 12% or more organic carbon if the mineral fraction has no clay, or c) have a proportional content of organic carbon between 12 and 18% if the clay content of the mineral fraction is less than 60%; or 2) never saturated with water for more than a few days and have 20% or more organic carbon.
PE	permafrost	Permafrost is a layer in which the temperature is perennially at or below 0°C.
PL	plinthite	Plinthite is an iron-rich, humus-poor mixture of clay with quartz and other diluents. It commonly occurs as red mottles, usually in platy, polygonal or reticulate patterns, and changes irreversibly to a hardpan or to irregular aggregates on exposure to repeated wetting and drying. In a moist soil, plinthite is usually firm but it can be cut with a spade. When irreversibly hardened the material is no longer considered plinthite. Such hardened material is shown as a petroferric or a skeletic phase.
SA	salic properties	The electric conductivity of the saturation extract is more than 15 dS/m within 30 cm of the surface, or more than 4 dS/m within 30 cm of the surface if the pH-H₂O exceeds 8.5.
SI	slickensides	Slickensides are polished and grooved surfaces that are produced by one mass sliding past another. Some of them occur at the base of a slip surface where a mass of soil moves downward on a relatively steep slope. Slickensides are very common in swelling clays in which there are marked seasonal changes in moisture content.
SM	smeary consistance	Thixotropic soil material; it changes under pressure or by rubbing from a plastic solid into a liquefied stage and back to the solid condition. In the liquefied stage the material skids or smears between the fingers (Andosols).
SO	sodic properties	The exchangeable sodium percentage is 15% or more, or exchangeable sodium plus magnesium is 50% or more.
SL	soft powdery lime	Translocated authigenic lime, soft enough to be cut readily with finger nail, precipitated in place from the soil solution rather than inherited from a soil parent material. It should be present in a significant accumulation (coatings on pores or structural faces).
HU	strongly humic	Soil material with an organic carbon content of more than 14 g/kg fine earth as a weighted average over a depth of 100 cm from the surface. This calculation assumes a bulk density of 1.5 kg/dm³.
SU	sulphidic materials	Sulphidic materials are waterlogged mineral or organic soil materials containing 0.75% or more sulphur (dry weight), mostly in the form of sulphides, having less than three times as much calcium carbonate equivalent as sulphur, and having a pH above 3.5. Sulphidic materials accumulate in a soil that is permanently saturated and having a pH above

SOTER MANUAL
3.5, generally with brackish water. If the soil is drained the sulphides oxidize to form sulphuric acid. The pH, which is normally near neutrality before drainage, drops below 3.5. At this point these materials become a sulphuric horizon. Sulphidic material differs from the sulphuric horizon in its reduced condition, its pH and the absence of jarosite mottles with a hue of 2.5Y or more or a chroma of 6 or more.

TO tonguing An albic horizon penetrates an argic horizon along ped surfaces, if peds are present. Tongues must have greater depth than width, have horizontal dimensions of 5 mm or more in fine textured argic horizons (clay, silty clay and sandy clay), 10 mm or more in moderately fine textured argic horizons, and 15 mm or more in medium or coarser textured argic horizons (silt loams, loams and sandy loams), and must occupy more than 15% of the mass of the upper part of the argic horizon.

VE vertic properties In connection with clayey soils which at some period in most years show one or more of the following: cracks, slickensides, wedge-shaped or parallelepiped structural aggregates, that are not in a combination, or are not sufficiently expressed, for the soils to qualify as Vertisols.

WM weatherable minerals Minerals included are those that are unstable in a humid climate relative to other minerals, such as quartz and 1:1 lattice clays, and that, when weathering occurs, liberate plant nutrients and iron or aluminium. They include: 1) clay minerals: all 2:1 lattice clays except aluminium-interlayered chlorite. Sepiolite, talc and glauconite are also included in the meaning of this group of weatherable clay minerals, although they are not always of clay size. 2) silt- and sand-size minerals: feldspars, feldspathoids, ferromagnesian minerals, glasses, micas, and zeolites.

67 horizon designation

Master horizon with subordinate characteristics according to the rules given below (for more details see FAO, 1990).

Master horizons

H H horizon/layer. Layer dominated by organic material, formed from accumulations of (partially) undecomposed organic material at the soil surface, which may be underwater. All H horizons are saturated with water for prolonged periods, or were once saturated but are now artificially drained. An H horizon may be on top of mineral soils or at any depth beneath the surface if it is buried.

O O horizon/layer. Layer dominated by organic material, consisting of (partially) undecomposed litter, such as leaves, twigs, moss etc., which has accumulated on the surface. They may be on top of either mineral or organic soils. An O horizon are not saturated with water for prolonged periods. The mineral fraction of such material is only a small percentage of the volume of the material and generally is much less than half the weight. An O horizon may be at the surface of a mineral soil or at any depth beneath the surface if it is buried.
A A horizon. Mineral horizon which formed at the surface or below an O horizon, and in which all or much of the original rock structure has been obliterated. The A horizon is characterised by one or more of the following:
- an accumulation of humified organic matter intimately mixed with the mineral fractions and not displaying properties characteristic of an E horizon (see below);
- properties resulting from cultivation, pasturing, or similar kinds of disturbance; or
- a morphology which is different from the underlying B or C horizon, resulting from processes related to the surface (e.g. vertisols).

E E horizon. Mineral horizon, in which the main feature is a loss of silicate clay, iron, aluminum, or some combination of these, leaving a concentration of sand and silt particles, and in which all or much of the original rock structure has been obliterated.

An E horizon is most commonly differentiated from an underlying B horizon by colour of higher value or lower chroma, or both; by coarser texture; or by a combination of these. Although an E horizon is usually near the surface, below an O or A horizon, and above a B horizon, the symbol E may be used without regard to position in the profile for any horizon that meets the requirements, and that has resulted from soil genesis.

B B horizon. A B horizon has formed below an A, E, O or H horizon, and has as dominant feature the obliteration of all or much of the original rock structure, together with one or a combination of the following:
- illuvial concentration, alone or in combination, of silicate clay, iron, aluminum, humus, carbonates, gypsum or silica;
- evidence of removal of carbonates;
- residual concentration of sesquioxides;
- coating of sesquioxides that make the horizon conspicuously lower in value, higher in chroma, or redder in hue than overlying and underlying horizons without apparent illuviation of iron;
- alteration that forms silicate clay or liberates oxides or both and that forms a granular, blocky or prismatic structure if volume changes accompany the changes in moisture content, or
- brittleness.

Layers with gleying but no other pedogenetic change are not considered a B horizon.

C C horizon/layer. A horizon or layer, excluding hard bedrock, that is little affected by pedogenetic processes and lacks properties of H, O, A, E or B horizons. Most are mineral layers, but some siliceous or calcareous layers (e.g. shells, coral and diatomaceous earth) are included. Sediments, saprolite and unconsolidated bedrock and other geological materials that commonly slake within 24 hours are included as C layers. Some soils form in highly weathered material that is considered a C horizon if it does not meet the requirements of an A, E or B horizon.

R R layer. Hard rock underlying the soil. Air dry chunks of an R layer will not slake within 24 hours if placed into water.
Subordinate properties

Subordinate distinctions and features within master horizons are indicated with lower case letters used as suffixes. The following subordinate properties may be used (see FAO, 1990 for more details).

b buried genetic horizon
c concretions or nodules
f frozen soil
g strong gleying
h accumulation of organic matter
j jarosite mottling
k accumulation of carbonates
m cementation or induration
n accumulation of sodium
o residual accumulation of sesquioxides
p ploughing or other disturbance
q accumulation of silica
r strong reduction
s illuvial accumulation of sesquioxides
t accumulation of silicate clay
v occurrence of plinthite
w development of colour or structure
x fragipan character
y accumulation of gypsum
z accumulation of salts more soluble than gypsum

68 lower depth (mandatory)

The average depth of the lower boundary in cm (the upper boundary in the case of an O horizon).
69 distinctness of transition

Abruptness of horizon boundary to underlying horizon (FAO, 1990).

A abrupt 0-2 cm
C clear 2-5 cm
G gradual 5-15 cm
D diffuse ≥ 15 cm

70 moist colour (mandatory)

The Munsell colours (moist soil) should be given. Only integer values and chromas are accepted.

71 dry colour

The Munsell colours (dry soil) should be given. Only integer values and chromas are accepted.

STRUCTURE

The grade, size and type of structure, defined according to FAO (1990), are described in items 72-74.

72 grade of structure

N structureless no observable aggregation or no orderly arrangement of natural planes of weakness (massive or single grain)

W weak soil with poorly formed indistinct peds, that are barely observable in place even in dry soil, breaks up into very few intact peds, many broken peds and much apedal material

M moderate soil with well-formed distinct peds, durable and evident in disturbed soil which produces many entire peds, some broken peds and little apedal material

S strong soil with durable peds that are clearly evident in undisturbed (dry) soil, which breaks up mainly into entire peds
73 size of structure elements

Table 4 Size classes for structure elements of various types. In mm's. (Soil Survey Staff, 1951; FAO, 1990).

<table>
<thead>
<tr>
<th>Size classes</th>
<th>Ranges of size of structure elements (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>platy</td>
</tr>
<tr>
<td>V very fine</td>
<td>< 1</td>
</tr>
<tr>
<td>F fine</td>
<td>1- 2</td>
</tr>
<tr>
<td>M medium</td>
<td>2- 5</td>
</tr>
<tr>
<td>C coarse</td>
<td>5-10</td>
</tr>
<tr>
<td>X very coarse</td>
<td>>10</td>
</tr>
</tbody>
</table>

74 type of structure (mandatory)

P platy particles arranged around a generally horizontal plane
R prismatic prisms without rounded upper end
C columnar prisms with rounded caps
A angular blocky bounded by plains intersecting at largely sharp angles.
S subangular blocky mixed rounded and plane faces with vertices mostly rounded
G granular spheroidal or polyhedral, relatively non-porous
B crumb spheroidal or polyhedral, porous
M massive no structure
N single grain no structure, individual grains
W wedge shaped structure in horizons with slickensides

COARSE FRAGMENTS

The presence of any rock or mineral fragments in the horizon is described in items 75 and 76.

75 abundance (mandatory)

Classes of volume % of rock or mineral fragments (> 2 mm) in soil matrix (FAO, 1990).

N none 0 %
V very few 0- 2 %
F few 2-5 %
C common 5-15 %
M many 15-40 %
A abundant 40-80 %
D dominant ≥ 80 %

76 size of coarse fragments

Size of dominant rock or mineral fragments in classes (FAO, 1990).

V very fine < 2 mm
F fine 2-6 mm
M medium 6-20 mm
C coarse ≥ 20 mm

77 very coarse sand

Weight % of particles 2.0-1.0 mm in fine earth fraction.

78 coarse sand

Weight % of particles 1.0-0.5 mm in fine earth fraction.

79 medium sand

Weight % of particles 0.5-0.25 mm in fine earth fraction.

80 fine sand

Weight % of particles 0.25-0.10 mm in fine earth fraction.

81 very fine sand

Weight % of particles 0.10-0.05 mm in fine earth fraction.
82 total sand (mandatory)

Weight % of particles 2.0-0.05 mm in fine earth fraction. The total sand fraction, either as an absolute value, or as the sum of the sub-fractions.

83 silt (mandatory)

Weight % of particles 0.05-0.002 mm in fine earth fraction.

84 clay (mandatory)

Weight % of particles < 0.002 mm in fine earth fraction.

85 particle size class

The particle size class as derived, with the aid of figure 11, from the particle size analysis results.

![Particle Size Class Diagram]

Figure 13 Texture classes of fine earth.

86 bulk density (mandatory)

The bulk density in kg dm⁻³.
moisture content at various tensions

The database accepts the soil moisture content (%) at 5 different tensions, of which one should be the moisture content at field capacity (-33 KPa) and one the moisture content at wilting point (-1500 KPa).

E.g.:

<table>
<thead>
<tr>
<th>KPa</th>
<th>-33</th>
<th>-98</th>
<th>-300</th>
<th>-510</th>
<th>-1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>soil moisture %</td>
<td>41</td>
<td>22</td>
<td>17</td>
<td>12</td>
<td>09</td>
</tr>
</tbody>
</table>

hydraulic conductivity

The saturated hydraulic conductivity in cm h⁻¹.

infiltration rate

The basic infiltration rate in cm h⁻¹.

pH (H₂O) (mandatory)

The pH is determined in the supernatant suspension of a 1:2.5 soil-water mixture (mandatory).

pH (KCl)

The pH is determined in the supernatant suspension of a 1:2.5 soil-1 M KCl mixture.

electrical conductivity (ECₑ)

The electrical conductivity of saturation extract, dS/m, only mandatory if the soil contains salts.

exchangeable Ca⁺⁺

The exchangeable Ca in cmol(+) kg⁻¹.

exchangeable Mg⁺⁺

The exchangeable Mg in cmol(+) kg⁻¹.

exchangeable Na⁺

The exchangeable Na in cmol(+) kg⁻¹.
96 exchangeable K^+

The exchangeable K in cmol(+) kg$^{-1}$.

97 exchangeable Al^{+++}

The exchangeable Al in cmol(+) kg$^{-1}$.

98 exchangeable acidity

The exchangeable acidity, as determined in 1N KCl, in cmol (+) kg$^{-1}$.

99 CEC soil (mandatory)

The cation exchange capacity of the soil at pH 7.0 in cmol(+) kg$^{-1}$.

100 total carbonate equivalent

The content of carbonates in g kg$^{-1}$.

101 gypsum

The gypsum content in g kg$^{-1}$.

102 total carbon (mandatory)

The content of total organic carbon in g kg$^{-1}$, a mandatory attribute for the topsoil (first 25 cm, or A horizon, whichever is deeper).

103 total nitrogen

The content of total N in g kg$^{-1}$.

104 P_2O_5

The P_2O_5 content in mg kg$^{-1}$.

105 phosphate retention

The phosphate retention in %.
106 Fe, dithionite extractable

The Fe fraction, in weight %, extractable in dithionite.

107 Fe, pyrophosphate extractable

The Fe fraction, in weight %, extractable in pyrophosphate at pH 10.

108 Al, dithionite extractable

The Al fraction, in weight %, extractable in dithionite.

109 Al, pyrophosphate extractable

The Al fraction, in weight %, extractable in pyrophosphate at pH 10.

110 clay mineralogy

The dominant type of mineral in the clay fraction.

AL allophane
CH chloritic
IL illitic
IN interstratified or mixed
KA kaolinitic
MO montmorillonitic
SE sesquioxidic
VE vermiculitic
PART II LAND USE AND VEGETATION

7 Land cover

In SOTER, land cover characteristics (vegetation and land use) are stored in two files that are separated from the soil and terrain properties. Attributes of land use and vegetation are displayed in table 5. In contrast with the more stable attributes of the land which are covered in Part I of this manual, land cover is considered a more dynamic entity which can change quickly in time. Therefore there may be a frequent need for addition of more recent data. Moreover, third parties are working on global databases for land use (FAO) and for vegetation, or are planning to do so. At present, such databases are not available but the need exists for the subsequent incorporation of these data into SOTER.

For interpretative uses of the SOTER database there is a need for land cover data. A provisional system for such data is implemented for the SOTER database. In it, the land cover information is given at the level of the SOTER unit. By doing so, the effort of digitizing separate land cover boundaries is avoided and a simple link is possible between the soil and terrain data and the land cover.

Table 5 Attributes of land use and vegetation files.

<table>
<thead>
<tr>
<th>LAND USE</th>
<th>VEGETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SOTER unit_ID</td>
<td>1 SOTER unit_ID</td>
</tr>
<tr>
<td>2 date of observation</td>
<td>2 date of observation</td>
</tr>
<tr>
<td>3 land use</td>
<td>3 vegetation</td>
</tr>
<tr>
<td>4 proportion of SOTER unit</td>
<td>4 proportion of SOTER unit</td>
</tr>
</tbody>
</table>

7.1 Land use

The land use file contains only four attributes, of which the first two, viz. SOTER unit ID and date of observation, are the key attributes.

1 SOTER unit_ID

Identification code of a SOTER unit (see chapter 6.1 Terrain).

2 date of observation

Date of observation for the land use; stored in format MM/YYYY.

3 land use

Land use classes are defined in a hierarchical system (Remmelzwaal, 1990). At the highest level, classes are subdivided into subclasses and groupes on the basis of the type of land use,
and the occurrence of input and/or output (animal products, crops). The codes for land use are given in table 6 and full descriptions in Annex 2.

4 proportion of SOTER unit

Proportion that the land use occupies within the SOTER unit, in %.

Table 6 Hierarchy of land use; land use orders, groups, and systems.

<table>
<thead>
<tr>
<th>S</th>
<th>SETTLEMENT/INDUSTRIES</th>
<th>SR</th>
<th>residential use</th>
<th>AA1</th>
<th>shifting cultivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>industrial use</td>
<td>AA2</td>
<td>fallow system cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ST</td>
<td>transport</td>
<td>AA3</td>
<td>ley system cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC</td>
<td>recreational</td>
<td>AA4</td>
<td>rainfed arable cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SX</td>
<td>excavations</td>
<td>AA5</td>
<td>wet rice cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AA6</td>
<td>irrigated cultivation</td>
</tr>
<tr>
<td>A</td>
<td>AGRICULTURE</td>
<td>AA</td>
<td>annual field cropping</td>
<td>AP1</td>
<td>non-irrigated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AP2</td>
<td>irrigated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP</td>
<td>perennial field cropping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT</td>
<td>tree & shrub cropping</td>
<td>AT1</td>
<td>non-irrigated tree crop cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AT2</td>
<td>irrigated tree crop cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AT3</td>
<td>non-irrigated shrub crop cultivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AT4</td>
<td>non-irrigated shrub crop cultivation</td>
</tr>
<tr>
<td>H</td>
<td>ANIMAL HUSBANDRY</td>
<td>HE1</td>
<td>nomadism</td>
<td>HI1</td>
<td>animal production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HE2</td>
<td>semi-nomadism</td>
<td>HI2</td>
<td>dairying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HE3</td>
<td>ranching</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HI</td>
<td>intensive grazing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>FORESTRY</td>
<td>FN1</td>
<td>selective felling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN2</td>
<td>clear felling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FP</td>
<td>plantation forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>MIXED FARMING</td>
<td>MF</td>
<td>agro-forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP</td>
<td>agro-pastoralism (cropping & livestock systems)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EXTRACTION/COLLECTING</td>
<td>EV</td>
<td>exploitation of natural vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EH</td>
<td>hunting and fishing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>NATURE PROTECTION</td>
<td>PN1</td>
<td>reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PN2</td>
<td>parks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PN3</td>
<td>wildlife management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD1</td>
<td>non-interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD2</td>
<td>with interference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60 SOTER MANUAL
7.2 Vegetation

The vegetation file contains four attributes, of which the first two, viz. SOTER unit ID and date of observation, are the key attributes.

1 SOTER unit ID

Identification code of a SOTER unit (see chapter 6.1 Terrain).

2 date of observation

Date of observation for the native vegetation; stored in format MM/YYYY.

3 vegetation

Generalized description of the physiognomy of the present native vegetation (Unesco, 1973). Table 7 gives the hierarchical classification of the vegetation to apply at the SOTER unit level. A full description of the classes is given in Annex 3. Vegetation should be specified at least on the formation subclass level.

4 proportion of SOTER unit

Proportion that the vegetation occupies within the SOTER unit, in %.

Table 7 Hierarchical vegetation classes.

<table>
<thead>
<tr>
<th></th>
<th>closed forest</th>
<th>IA mainly evergreen forest</th>
<th>IA1 tropical ombrophilous forest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IA2 tropical and subtropical evergreen seasonal forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA3 tropical and subtropical semi-deciduous forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA4 subtropical ombrophilous forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA5 mangrove forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA6 temperate and subpolar evergreen ombrophilous forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA7 temperate evergreen seasonal broad-leaved forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA8 winter-rain evergreen broad-leaved sclerophyllous forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA9 tropical and subtropical evergreen needle-leaved forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IA10 temperate and subpolar evergreen needle-leaved forest</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Subcategory</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>mainly deciduous forest</td>
<td>IB1 tropical and subtropical drought-forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB2 cold-deciduous forest with evergreen trees (or shrubs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB3 cold-deciduous forest without evergreen trees</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>extremely xeromorphic forest</td>
<td>IC1 sclerophyllous-dominated extremely xeromorphic forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC2 thorn-forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC3 mainly succulent forest</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>woodland</td>
<td>IIA mainly evergreen woodland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIA1 evergreen broad-leaved woodland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIA2 evergreen needle-leaved woodland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIB1 drought-deciduous woodland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIB2 cold-deciduous woodland with evergreen trees</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIB3 cold-deciduous woodland without evergreen trees</td>
<td></td>
</tr>
<tr>
<td>IIIC</td>
<td>extremely xeromorphic woodland</td>
<td>IIB subdivisions as extremely xeromorphic forest (IC)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>scrub</td>
<td>IIIA mainly evergreen scrub</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIA1 evergreen broad-leaved shrubland (or thicket)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIA2 evergreen needle-leaved and microphyllous shrubland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIIB1 drought-deciduous scrub with evergreen woody plants admixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIIB2 drought-deciduous scrub without evergreen woody plants admixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIIB3 cold-deciduous scrub</td>
<td></td>
</tr>
<tr>
<td>IIIC</td>
<td>extremely xeromorphic (subdesert) shrubland</td>
<td>IIIC1 mainly evergreen subdesert shrubland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIIC2 deciduous subdesert shrubland</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>dwarf scrub and related communities</td>
<td>IVA mainly evergreen dwarf-scrub</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVA1 evergreen dwarf-scrub thicket</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVA2 evergreen dwarf shrubland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVA3 mixed evergreen dwarf-shrubland and herbaceous formation</td>
<td></td>
</tr>
<tr>
<td>IVB</td>
<td>mainly deciduous dwarf-scrub</td>
<td>IVB1 facultatively drought-deciduous dwarf-thicket (or dwarf-shrubland)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVC</td>
<td>extremely xeromorphic dwarf-shrubland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVD</td>
<td>tundra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVE</td>
<td>mossy bog formations with dwarf-shrub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>herbaceous vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>tall graminoid vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>medium tall grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>short grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVB2</td>
<td>obligatory, drought-deciduous dwarf-thicket (or dwarf-shrubland)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVB3</td>
<td>cold-deciduous dwarf-thicket (or dwarf-shrubland)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVD1</td>
<td>mainly bryophyte tundra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVD2</td>
<td>mainly lichen tundra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVE1</td>
<td>raised bog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVE2</td>
<td>non-raised bog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA1</td>
<td>tall grassland with a tree synusia covering 10-40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA2</td>
<td>tall grassland with a tree synusia <10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA3</td>
<td>tall grassland with a synusia of shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA4</td>
<td>tall grassland with a woody synusia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA5</td>
<td>tall grassland practically without woody synusia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB1</td>
<td>medium tall grassland with a tree synusia covering 10-40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB2</td>
<td>medium tall grassland with a synusia <10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB3</td>
<td>medium tall grassland with a synusia of shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB4</td>
<td>medium tall grassland with an open synusia of tuft plants (usually palms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB5</td>
<td>medium tall grassland practically without woody synusia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC1</td>
<td>short grassland with a tree synusia covering 10-40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC2</td>
<td>short grassland with a tree synusia <10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC3</td>
<td>short grassland with a synusia of shrubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC4</td>
<td>short grassland with an open synusia of tuft plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC5</td>
<td>short grassland practically without woody synusia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC6</td>
<td>short to medium tall mesophytic grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC7</td>
<td>graminoid tundra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD</td>
<td>forb vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD1</td>
<td>tall forb communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD2</td>
<td>low forb communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>hydromorphic fresh-water vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE1</td>
<td>rooted fresh-water communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE2</td>
<td>free-floating fresh-water communities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART III MISCELLANEOUS FILES

8 Reference files

Tables containing information on the source materials used for the compilation of the SOTER units, generally soil maps, the laboratories that analysed the soil samples, the laboratory methods and the organisations responsible for the national profile database are described in this chapter.

Table 8 Attributes of related tables.

<table>
<thead>
<tr>
<th>SOURCE MAP</th>
<th>LABORATORY</th>
<th>PROFILE DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 map_ID</td>
<td>1 lab_ID</td>
<td>1 soil profile database_ID</td>
</tr>
<tr>
<td>2 map title</td>
<td>2 laboratory name</td>
<td>2 name of institute</td>
</tr>
<tr>
<td>3 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 scale</td>
<td>LABORATORY METHOD</td>
<td></td>
</tr>
<tr>
<td>5 minimum latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 minimum longitude</td>
<td>LABORATORY METHOD</td>
<td></td>
</tr>
<tr>
<td>7 maximum latitude</td>
<td>3 lab_ID</td>
<td></td>
</tr>
<tr>
<td>8 maximum longitude</td>
<td>4 date</td>
<td></td>
</tr>
<tr>
<td>9 type of map</td>
<td>5 attribute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 method of analysis_ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANALYTICAL METHOD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 method of analysis_ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 description</td>
<td></td>
</tr>
</tbody>
</table>

8.1 Source map

In this file information on type of map, scale, location and date are stored. As the location in max and min X and Y-coordinates is recorded, the GIS can be used to overlay this information on the SOTER map. There exists a direct link (primary key 'map_ID') between the terrain table and the source map table. The attributes are shown in table 8.

1 map_ID

The source map identification code from which the data were derived for the compilation of the SOTER units. See also map_ID in chapter 6.1 Terrain.

2 map title

The citation of the source map title. There is room for 40 characters.
year

The year of publication of the source map.

scale

The scale of the source map as a representative fraction.

minimum latitude

The minimum latitude (Y-coordinate) of the source map, in decimal degrees East. Latitude West is a negative figure.

minimum longitude

The minimum longitude (X-coordinate) of the source map, in decimal degrees North. Longitude South gets a negative number.

maximum latitude

The maximum latitude (Y-coordinate) of the source map, in decimal degrees East.

maximum longitude

The maximum longitude (X-coordinate) of the source map, in decimal degrees North.

type of source map

The type of source map:

S pure soil map
M morpho-pedological map (soil-landscapes)
O other map

8.2 Laboratory information

For every analysis method that has been applied in a particular laboratory separate entries in these tables should be made.
Laboratory

1 \textit{lab_ID}

Identification code for the laboratory that analyzed the reference soil profile. A country code with a sequential number is given. See list of country codes in annex 4.

2 \textit{laboratory name}

Name of the laboratory, in full (up to 40 characters).

Laboratory method

3 \textit{lab_ID}

Laboratory code (see attribute 1, lab_ID).

4 \textit{date}

Date at which the laboratory introduced a method for a given attribute. Format is MM/YYYY.

5 \textit{attribute}

Profile layer attribute that was analyzed. The item code preceding the attribute in table 1 and in the margin is used.

6 \textit{method of analysis_ID}

Identification code for the analysis method applied. This code consists of the attribute code (item 5) followed by a sequential number.

Analytical method

7 \textit{method of analysis_ID}

Method code (see attribute 6).

8 \textit{description}

A complete description of the analytical method used. There is room for 256 characters.
8.3 Soil profile database

Information on the (national) soil profile database that has been consulted for the selection of the SOTER profile data can be found as an additional file. A code for the country (ISO code from Annex 4) followed by a sequence number is given. Also the name of the organisation can be indicated.

1 profile database_ID

The identification code for the owner, institute or organisation that holds (part of) the national soil profile database. The code consists of an ISO code for the country (see annex 4) and a sequence number.

2 name

Name (in full) of the owner, institute or organisation of the national soil profile database and address, up to 40 characters.
Climate

9.1 Introduction

Climatic data forms an inseparable part of the basic inventory of natural resources. Nevertheless, climate is treated separately from the SOTER database as the climate data are not directly linked to the SOTER units. Climate data are based on point observations only and the link with the soils and terrain information exists by means of the geographical location of these points. The SOTER climate files are intended for multiple applications of the soils and terrain database. Monthly data are considered sufficient for most of the (small scale) applications.

At the Workshop on Procedures Manual Revisions (ISRIC, 1990b), it was recommended that the attribute data for the climate database of SOTER should be derived, if possible, from existing computerized databases, e.g. WMO (CLICOM), FAO and CIAT. Data from these databases can be imported through an ASCII file interface. Care should be taken on the units of measure.

Data from point observations are extracted from meteorological data sets and consist of two major groupings: 1) climate station particulars, and 2) monthly climate data.

The files shown in table 9 are used to store the station particulars and the monthly climatic data as well as the date sources.

Table 9 Attributes for climate station, climate data and source tables.

<table>
<thead>
<tr>
<th>CLIMATE STATION</th>
<th>CLIMATE DATA</th>
<th>DATA SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 climate station ID</td>
<td>6 climate station ID</td>
<td>25 source ID</td>
</tr>
<tr>
<td>2 climate station name</td>
<td>7 kind of data</td>
<td>26 source name</td>
</tr>
<tr>
<td>3 latitude</td>
<td>8 source ID</td>
<td></td>
</tr>
<tr>
<td>4 longitude</td>
<td>9 first year</td>
<td></td>
</tr>
<tr>
<td>5 altitude</td>
<td>10 last year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 years of record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 jan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 dec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 annual</td>
<td></td>
</tr>
</tbody>
</table>

9.2 Climate station

1 climate station ID

The climate station ID is given as a two-character ISO country code (according to Annex 4) followed by a four digit sequential number.
2 climate station name

The name of the climate station is given. Up to 40 characters are permitted.

3 latitude

The latitude is stored in decimal degrees north; latitudes in the southern hemisphere are negative.

4 longitude

The longitude is stored in decimal degrees east; longitudes in the western hemisphere are negative.

5 altitude

The altitude above or below (negative) sea level, m.

9.3 Climate data

6 climate station_ID

Code for the climate station. See station code under Climate station.

7 kind of data

The various kinds of climatic data are treated in paragraph 9.4

8 source_ID

Identification code for the main source of the data for each separate kind of data. Codes are to be explained in the data source file (see chapter 9.6).

9 first year

The first year of the observation period.

10 last year

The last year of the observation period.
11 years

The number of years of record in the observation period

12...23 \textit{jan...dec}

The data values for each individual month. Average monthly value for the numbers of years recorded.

24 \textit{annual}

The annual value (average or total).

9.4 Various climate characteristics

In this section various climate characteristics (attribute 8: 'kind of data') are arranged in several groups. The importance of the kind of data attribute is indicated by a letter (M = mandatory, D = desirable and O = optional). When a mandatory characteristic is missing, the station should not be included in the database.

\textbf{rainfall}

Data on rainfall is recorded in mm’s. The amount of rainfall is a mandatory attribute; if it is missing, it is considered of no use to include the climate station in the database.

\begin{tabular}{ll}
RAIN & M precipitation total, mm \\
RDAY & D number of rainy days; days with at least 1 mm of precipitation \\
RMAX & O maximum 24-hour rainfall, mm \\
RR75 & O rainfall reliability; the amount of rainfall exceeded in 3 out of 4 years, mm
\end{tabular}

\textbf{temperature}

Temperature is stored in degrees centigrade (°C). Both minimum and maximum temperatures are mandatory. The average temperature is optional because it can be derived from the minimum and maximum temperatures.

\begin{tabular}{ll}
TEMP & O mean temperature during 24-hour period \\
TMIN & M minimum temperature during a 24 hour period \\
TMAX & M maximum temperature during a 24 hour period
\end{tabular}

\textbf{radiation/sunshine}

Either radiation or sunshine hours is mandatory; the other is then optional. Radiation data is preferred.
RADI M/O total radiation, MJ.m\(^{-2}\).day\(^{-1}\)
SUNH O/M hours of bright sunshine per day
CLOU O degree of cloudiness, octas

humidity

Either vapour pressure or relative humidity is mandatory. Vapour pressure is preferable to above relative humidity.

VAPP M/O vapour pressure, mbar
HUMI O/M average relative humidity during 24 hour period, %
HMIN O minimum relative humidity during 24 hour period, %
HMAX O maximum relative humidity during 24 hour period, %

wind

Wind velocity in m/s.

WIND D mean wind velocity at 2 m during 24 hour period
WDAY O wind speed during day at 2m during 24 hour period
WNIG O wind speed during night at 2m during 24 hour period
WDIR O dominant wind direction at 2m during 24 hour period

risk or occurrence of adverse weather events

WRIS O risk or occurrence of adverse weather events like severe hailstorms, hurricanes and nightfrost. Indicated on a scale of 0 (never) to 1 (every year in the month under consideration). Intermediate values are used if the frequency is less than every year (for that month). E.g.: One occurrence every 5 years in the month of March = 0.2

evaporation

EPAN O class A pan evaporation, mm
ECOL O Colorado pan evaporation, mm
EPIC O evaporation, Piche, mm

evapotranspiration

Because evapotranspiration is a calculated characteristic, it is optional.

PETP O Penman potential evapotranspiration, mm
PETH O Hargreaves potential evapotranspiration, mm
PETT O Thornthwaite potential evapotranspiration, mm
Table 10
Example of various kinds of climatic data recorded for a climate station (Posadas, Argentina).

<table>
<thead>
<tr>
<th>STAT</th>
<th>SR</th>
<th>DATA</th>
<th>F-yr</th>
<th>L-yr</th>
<th>YRS</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>ANNUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A121</td>
<td>06</td>
<td>RAIN</td>
<td>1901</td>
<td>1980</td>
<td>80</td>
<td>141</td>
<td>148</td>
<td>139</td>
<td>140</td>
<td>139</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>A121</td>
<td>07</td>
<td>KDAY</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>9.8</td>
<td>9.3</td>
<td>9.3</td>
<td>8.3</td>
<td>8.3</td>
<td>9.6</td>
<td>9.6</td>
<td>9.3</td>
<td>9.3</td>
<td>11.0</td>
<td>10.6</td>
<td>7.6</td>
<td>8.6</td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>TEMP</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>26.2</td>
<td>25.8</td>
<td>24.3</td>
<td>22.0</td>
<td>20.7</td>
<td>18.1</td>
<td>16.6</td>
<td>15.6</td>
<td>17.3</td>
<td>18.8</td>
<td>20.9</td>
<td>23.3</td>
<td>25.7</td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>TMIN</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>19.7</td>
<td>19.4</td>
<td>18.2</td>
<td>14.8</td>
<td>12.5</td>
<td>11.5</td>
<td>10.0</td>
<td>11.0</td>
<td>12.0</td>
<td>14.7</td>
<td>16.5</td>
<td>18.8</td>
<td>15.0</td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>TMAX</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>32.7</td>
<td>32.2</td>
<td>30.4</td>
<td>26.6</td>
<td>23.6</td>
<td>21.5</td>
<td>21.2</td>
<td>23.6</td>
<td>24.8</td>
<td>27.2</td>
<td>30.1</td>
<td>32.6</td>
<td>27.2</td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>VAPP</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>24.5</td>
<td>24.8</td>
<td>32.0</td>
<td>19.3</td>
<td>17.5</td>
<td>15.9</td>
<td>14.2</td>
<td>14.7</td>
<td>16.5</td>
<td>18.5</td>
<td>19.7</td>
<td>21.8</td>
<td>19.2</td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>WIND</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>1.5</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>A121</td>
<td>01</td>
<td>PETP</td>
<td>1951</td>
<td>1980</td>
<td>30</td>
<td>149</td>
<td>125</td>
<td>105</td>
<td>69</td>
<td>45</td>
<td>32</td>
<td>41</td>
<td>63</td>
<td>74</td>
<td>104</td>
<td>138</td>
<td>161</td>
<td>110.9</td>
</tr>
</tbody>
</table>

9.5 Additional conventions

Data can be given for different categories of climate characteristics:

For Penman calculations, mandatory data are minimum and maximum temperature, irradiation, vapour pressure or relative humidity, wind speed, monthly rainfall, and number of rainy days.

When data are missing, some parameters can be estimated from others:
- relative humidity and vapour pressure can be estimated from each other
- radiation, sunshine hours, and cloudiness degree
- minimum and maximum temperature determine average temperature.

9.6 Data sources

One related file to the climate database exists: data sources. It contains one key field namely the source_ID of the climate data file and one attribute: the full name of the source (published report, or name and address of the meteorological organisation holding the complete climate dataset).

25 source_ID

Identification code for the source of data (as item 8).

26 source name

The full name of the source from which the climatic data have been taken.
ANNEX 1. Hierarchy of landforms

The term landform as used in this manual, is land with a characteristic slope (see also Remmelzwaal, 1990). Landform separation (first and second level) is thus based on morphometric criteria, chief amongst which is the slope gradient. The relief intensity is the second most important criterion used to subdivide the landscape. Subdivisions of level lands also take into account the position of the landform vis-à-vis the surrounding land. Further separation of the landforms according to hypsometric criteria is different for each 1st level landform (see item 10). Exceptions to this are noted with the description of the 2nd level landforms. The classification as presented here has been tested for a 1:5 million physiographic inventory of South America and Africa (Eschweiler, 1993 and Wen, 1993).

1ST LEVEL LANDFORMS

LEVEL LAND

Level lands are all lands with dominant slopes between 0 and 8% (0° and 4°40''). Moreover, the relief intensity is such that the difference between the highest and the lowest point within one slope unit is mostly less than 50 m.

SLOPING LAND

Sloping land embraces all landforms that have dominant slopes between 8% and 30%, combined with in most cases a relief intensity of more than 50 m per slope unit. In general, sloping land will be more heterogeneous with respect to its slope than level land.

STEEP LAND

Steep land is mainly confined to mountainous country, where average slopes are over 30% (the variability of slope gradients may be so much as to make it difficult to recognize a dominant slope) and the relief intensity is more than 600 m/2 km.

LANDS WITH COMPOSITE LANDFORMS

Two strongly contrasting landforms, themselves not separable at the scale of mapping, may be combined if they are part of an outstanding landform that as such can be delineated at the scale of mapping. Examples of such landforms associations are valleys, made up of side-slopes and a valley bottom, and narrow plateaux, where a level surface is surrounded by relative steeply sloping land. Not all possible combinations are given here and the user may define others if the need for them arises (e.g. deeply incised plateau, consisting of a plateau and high-gradient valleys).

2ND LEVEL LANDFORMS

L Level lands

Except for low-gradient footslopes, all types of level lands that can be distinguished meet the same criteria, although they differ in their relationship towards the surrounding

ANNEX LANDFORMS

75
land. As the upper slope limit for level land is a gradient of 8%, areas with a perceptible slope may still be considered level land.

LP Plains

Plains are all level lands that are not enclosed between higher lying lands, that do not protrude above the surrounding country, or that do not rise gently against land with a considerable steeper slope.

LL Plateaux

Plateaux are level lands that are, compared with the surrounding landscapes, situated at relatively elevated positions. Plateau can be very extensive, but must always on at least one side be bounded by a slope or escarpment (8% ore more), connecting it with lower lying land. Many so-called plateaux are in fact elevated plains, and should be classified as such.

LD Depressions

A depression is an area of level land that is on all sides surrounded by higher lying level or sloping land. The area occupied by the band of sloping land that forms the transition from the higher ground to the floor of the depression is small compared to the area within the depression taken up by level land.

LF Low-gradient footslopes

Steadily rising level land, abutting strongly sloping or steep lands, are classified as low level footslopes. They merge into other types of level land, including low gradient footslopes that rise in an opposite direction. Pediments, (coalescing) alluvial fans and other similar landforms can all be considered low level footslopes. Footslopes with a higher gradient than 8% are accommodated under hills, as such slopes are usually incised to the extent that they take a hilly character.

LV Valley floors

Elongated strips of level land, on both sides flanked by areas with sloping or steep land, constitute valley floors. Valley floors normally taper off at one end, where they are embraced by steeper land on three sides. They may connect with other types of level land or sloping land at the other end. In mountainous areas valley floors can be surrounded on all sides by steep lands, and do not necessarily have to be elongated.

S Sloping land

Sloping land is land with a gradient of between 8 and 30%. In most cases the relief intensity of sloping land is more than 50 m per slope unit.

SM Medium-gradient mountains

Relatively gently sloping (15-30% gradient) mountains with a local relief intensity of more than 600 m. Many volcanoes will fall into this category, as do several foothill zones of major mountain systems.
SH Medium-gradient hills

All sloping land with an undulating relief (minimum relief intensity 50 m per slope unit), not elongated, or more than 600 m high, or incorporated in mountainous terrain, are considered hills. This group does not only include hilly landforms, but also accommodates other landforms such as medium-gradient footslopes, etc.

SE Medium-gradient escarpment zone

Relatively gently sloping (usually 15-30% gradient) zone that forms a transition between high and low lying country. The local relief intensity of this landform is normally less than 600 m/2 km.

SR Ridges

A ridge meets all the qualifications of medium-gradient hills, but has an elongated shape with a single crest, which may have a more or less constant elevation, or may contain a number of peaks. Relatively narrow plateaus are excluded from this landform group.

SU Mountainous highland

Land which, although forming part of a mountain range (slopes of more than 30% and relief intensities in excess of 600 m per 2 km), constitute a restricted zone with less steep slopes and subdued relief. Mountainous highland always forms part of a mountain system, and is thus on at least one side bounded by high-gradient mountains. Hypsometric subdivision of this category is according to the qualifiers for steep lands.

SP Dissected plains

Sloping land with a more or less constant crest level, and relief intensities of less than 50 m per slope unit.

T Steep land

All land with slopes in excess of 30% is considered steep land. The main landform in this category is mountainous land.

TM High-gradient mountains

All steep land with a relief intensity of more than 600 m per 2 km, and surrounding one or more outstanding peaks.

TH High-gradient hills

Steep but low relief land (relief intensity of less than 600 m per 2 km). Badlands would be a landform taken care of by this group, which is hypsometrically subdivided according to the qualifiers for sloping land.
TE High-gradient escarpment zone

Steep land that forms the transition between high and low lying country and lacks outstanding peaks. The relief intensity is normally more than 600 m per 2 km.

TV High-gradient valleys

Very steep valleys, with normally very little valley floor. No height limit is given, as the lack of valley floor and the presence of steep slopes ensure that only deep valleys will cover sufficient area to produce mappable delineations. Mostly incised elevated sedimentary plateaux.

C Lands with composite landforms

Landforms, containing both level and steep or sloping land, which cannot be separated at the scale of the mapping, are considered composite landforms. Composite landforms are using hypsometric qualifiers according to the characteristics of their level part.

CV Valleys

The valley, made up of sideslopes and a valley bottom, is taken as one landform.

CL Narrow plateaus

A narrow strip of level land surrounded on all sides by sloping or steep falling land form together a narrow plateau.

CD Major depressions

A large tract of level land, surrounded on all sides by high, rising sloping or steep land, is characterized as a major depression. Uvalas are typical for this group.
ANNEX 2. Hierarchy of land use

Adapted from Remmelzwaal (1990).

S Settlement/industries
Residential, industrial use.

SR Residential use
Cities.

SI Industrial use
Industries.

ST Transport
Roads, railways etc.

SC Recreation
In use for recreation.

SX Excavations
Land used for excavations, quarries.

A Agriculture
Land used for cultivation of crops.

AA Annual field cropping
One or more crops harvested within one year. Land under temporary crops.

AA1 Shifting cultivation
Agricultural systems that involve an alternation between cropping for a few years on selected and cleared plots and a lengthy period when the soil is rested. The land is cultivated for less than 33% of the years.
AA2 Fallow system cultivation

Agricultural systems that involve an alternation of cropping periods and fallow periods. The land is cultivated between 33 and 67% of the growing seasons; bush or grass fallows are typical.

AA3 Ley system cultivation

Several years of arable cropping are followed by several years of grass and legumes utilized for livestock production.

AA4 Rainfed arable cultivation

Agricultural systems where the land is cultivated in more than 67% of the growing seasons.

AA5 Wet rice cultivation

Annual field cropping system for the production of wetland rice. Paddies with or without controlled water supply and drainage system. Plots are inundated during at least some part of the cropping period.

AA6 Irrigated cultivation

Annual field cropping system with an artificial supply of water, in addition to rain.

AP Perennial field cropping

Land under perennial crops. Crops harvested more than one year after planting. Examples of perennial field crops are sugar-cane, bananas, pineapples and sisal.

AP1 Non-irrigated cultivation

AP2 Irrigated cultivation

AT Tree & shrub cropping

Crops harvested annually or perennially; trees or shrubs produce more than one crop. Examples of tree crops are oil-palm, rubber, cacao, coconuts and cloves; typical shrub crops are coffee and tea.

AT1 Non-irrigated tree crop cultivation

AT2 Irrigated tree crop cultivation

AT3 Non-irrigated shrub crop cultivation
AT4 Irrigated shrub crop cultivation

H Animal husbandry

Animal products.

HE Extensive grazing

Grazing on natural or semi-natural grassland or savanna vegetation.

HE1 Nomadism

Systems in which the animal owners do not have a permanent place of residence. No regular cultivation practices. People move with herds.

HE2 Semi-nomadism

Animal owners have a permanent place of residence where supplementary cultivation is practised. Herds are moved to distant grazing areas.

HE3 Ranching

Grazing within well defined boundaries, movements less distant and higher management level as compared to semi-nomadism.

HI Intensive grazing

Stationary animal husbandry. Grazing on permanent/semi-permanent improved grassland systems.

HI1 Animal production

HI2 Dairying

F Forestry

Activities related to the production of wood. Exploitation of forest for wood, with reforestation. A commercial activity.

FN Exploitation of natural forest and woodland

Wood is extracted from natural forest and woodland for commercial purpose.
FN1 selective felling

Only selected species are removed from the natural vegetation.

FN2 clear felling

All natural vegetation is cleared after which the area is reforested. This land use system develops into a plantation forestry system.

FP Plantation forestry

Forested areas. Relatively high management level. Homogeneous tree stands.

M Mixed farming

Activities concerning cropping and forestry or animal husbandry are mixed.

MF Agro-forestry

Combination of agriculture and forestry (with reforestation).

MP Agro-pastoralism

Combination of agriculture and animal husbandry, also called transhumance (farmers with a permanent place of residence send their herds, tended by herdsman, for long periods of time to distant grazing areas).

E Extraction/collecting

Extraction of products from the environment.

EV exploitation of natural vegetation

Land used for extraction of wood or other products from the vegetation; for domestic use.

EH hunting and fishing

Extraction of animals or fish from ecosystem.

P Nature protection

No, or low intensity of use, but under management system; low level of interference with natural environment or ecosystem.
PN Nature and game preservation

PN1 Reserves

PN2 Parks

PN3 Wildlife management

PD Degradation control

Degradation of land, in most cases further degradation, is not desirable and the land is protected.

PD1 Non-interference

All uses of the land are prohibited.

PD2 Interference

The land is managed. Works are implemented in order to stop degradation and limit the degradation risk.

U Unused

Not used and not managed.
ANNEX 3. Hierarchy of vegetation

After Unesco (1973).

I Closed forest

Formed by trees at least 5 m tall with their crowns interlocking.

IA Mainly evergreen forest

The canopy is never without green foliage. However, individual trees may shed their leaves for that period.

IA1 Tropical ombrophilous forest (tropical rain forest)

Consisting mainly of broad-leaved evergreen trees, neither cold nor drought resistant. Truly evergreen, i.e. the forest canopy remains green all year though individual trees may be leafless for a few weeks.

IA2 Tropical and subtropical evergreen seasonal forest

Consisting mainly of broad-leaved evergreen trees. Foliage reduction during the dry season noticeable, often as partial shedding of leaves.

IA3 Tropical and subtropical semi-deciduous forest

Most of the upper canopy trees deciduous or drought-resistant; many of the understorey trees and shrubs evergreen and more or less sclerophyllous¹.

IA4 Subtropical ombrophilous forest

Forest with a dry season and more pronounced temperature differences between summer and winter than tropical ombrophilous forest.

IA5 Mangrove forest

Composed almost entirely of evergreen sclerophyllous broad-leaved trees/shrubs with either stilt roots or pneumatophores.

¹ Sclerophyllous: thick, hard leaves

ANNEX VEGETATION

85
IA6 Temperate and subpolar evergreen ombrophilous forest

Consisting mostly of truly evergreen hemi-sclerophyllous trees and shrubs. Rich in epiphytes and herbaceous ferns.

IA7 Temperate evergreen seasonal broad-leaved forest

Consisting mainly of hemi-sclerophyllous evergreen trees and shrubs, rich in herbaceous undergrowth.

IA8 Winter-rain evergreen broad-leaved sclerophyllous forest (Mediterranean forest)

Consisting mainly of sclerophyllous evergreen trees and shrubs, most of them showing rough bark. Herbaceous undergrowth almost lacking.

IA9 Tropical and subtropical evergreen needle-leaved forest

Consisting mainly of needle-leaved evergreen trees. Broad-leaved trees may be present.

IA10 Temperate and subpolar evergreen needle-leaved forest

Consisting mainly of needle-leaved or scale-leaved evergreen trees, but broad-leaved trees may be admixed.

IB Mainly deciduous forest

Majority of trees shed their foliage simultaneously in connection with the unfavourable season.

IB1 Tropical and subtropical drought-deciduous forest

Unfavourable season mainly characterized by drought, in most cases winter-drought. Foliage is shed regularly every year. Most trees with relatively thick, fissured bark.

IB2 Cold-deciduous forest with evergreen trees (or shrubs)

Unfavourable season mainly characterized by winter frost. Deciduous broad-leaved trees dominant, but evergreen species present.

IB3 Cold-deciduous forest without evergreen trees

Deciduous trees absolutely dominant.
IC Extremely xeromorphic forest

Dense stand of xeromorphic phanerophytes such as bottle trees, tuft trees with succulent leaves and stem succulents. Undergrowth with shrubs of similar xeromorphic adaptations.

IC1 Sclerophyllous-dominated extremely xeromorphic forest

Predominance of sclerophyllous trees.

IC2 Thorn forest

Species with thorny appendices predominate.

IC3 Mainly succulent forest

Tree-formed and shrub-formed succulents

II Woodland

Composed of trees at least 5 m tall with crowns not usually touching but with a coverage of at least 40%.

IIA Mainly evergreen woodland

The canopy is never without green foliage.

IIA1 Evergreen broad-leaved woodland

Mainly sclerophyllous trees and shrubs.

IIA2 Evergreen needle-leaved forest

Mainly needle-leaved or scale-leaved.

IIB Mainly deciduous woodland

Majority of trees shed their foliage simultaneously in connection with the unfavourable season.
IIB1 Drought deciduous woodland

Unfavourable season mainly characterized by winter-drought. Foliage is shed regularly every year. Most trees with relatively thick, fissured bark.

IIB2 Cold-deciduous woodland with evergreen trees

Unfavourable season mainly characterized by winter frost. Deciduous broad-leaved trees dominant, but evergreen species present.

IIB3 Cold-deciduous woodland without evergreen trees

Deciduous trees absolutely dominant.

IIC Extremely xeromorphic woodland

Open stand of xeromorphic phanerophytes such as bottle trees, tuft trees with succulent leaves and stem succulents. Undergrowth with shrubs of similar xeromorphic adaptations.

IIC1 Sclerophyllous-dominated extremely xeromorphic woodland

Predominance of sclerophyllous trees.

IIC2 Thorn woodland

Species with thorny appendices predominate.

IIC3 Mainly succulent woodland

Tree-formed and shrub-formed succulents

III Scrub (shrubland or thicket)

Mainly composed of woody plants 0.5 to 5 m tall. Subdivisions:
- Shrubland: most of the individual shrubs not touching each other; often grass undergrowth
- Thicket: individual shrubs interlocked

IIIA Mainly evergreen scrub

The canopy is never without green foliage. However, individual shrubs may shed their leaves.
IIIA1 Evergreen broad-leaved shrubland (or thicket)
Mainly sclerophyllous shrubs.

IIIA2 Evergreen needle-leaved and microphyllous shrubland (or thicket)
Mainly needle-leaved or scale-leaved shrubs.

IIIB Mainly deciduous scrub
Majority of shrubs shed their foliage simultaneously in connection with the un-favourable season.

IIIB1 Drought-deciduous scrub with evergreen woody plants admixed
IIIB2 Drought-deciduous scrub without evergreen woody plants admixed
IIIB3 Cold-deciduous scrub

IIIC Extremely xeromorphic (subdesert) shrubland
Very open stands of shrubs with various xerophytic adaptations, such as extremely scleromorphic or strongly reduced leaves, green branches without leaves, or succulents stems, etc., some of them with thorns.

IIIC1 Mainly evergreen subdesert shrubland
In extremely dry years some leaves and shoot portions may be shed.

IIIC2 Deciduous subdesert shrubland
Mainly deciduous shrubs, often with a few evergreens

IV Dwarf-scrub and related communities
Rarely exceeding 50 cm in height. Subdivisions:
- Dwarf-scrub thicket: branches interlocked
- Dwarf-shrubland: individual dwarf-shrubs more or less isolated or in clumps.
IVA Mainly evergreen dwarf-scrub
Most dwarf-scrubs evergreen.

IVA1 Evergreen dwarf-scrub thicket
Densely closed dwarf-scrub cover, dominating the landscape.

IVA2 Evergreen dwarf-shrubland
Open or more loose cover of dwarf-shrubs.

IVA3 Mixed evergreen dwarf-shrub and herbaceous formation

IVB Mainly deciduous dwarf-scrub
Most dwarf-scrubs deciduous.

IVB1 Facultatively drought-deciduous dwarf-thicket (or dwarf-shrubland)
Foliage is shed only in extreme years.

IVB2 Obligatory, drought-deciduous dwarf-thicket (or dwarf-shrubland)
Densely closed dwarf-shrub stands which loose all or at least part of their leaves in the
dry season.

IVB3 Cold-deciduous dwarf-thicket (or dwarf-shrubland)
Densely closed dwarf-shrub stands which loose all or at least part of their leaves at the
beginning of a cold season.

IVC Extremely xeromorphic dwarf-shrubland
More or less open formations of dwarf-shrubs, succulents and other life forms adapted to
survive or to avoid a long dry season. Mostly subdesertic.

IVC1 Mainly evergreen subdesert dwarf-shrubland
In extremely dry years some leaves and shoot portions may be shed.
IVC2 Deciduous subdesert dwarf-shrubland

Mainly deciduous dwarf-shrubs, often with a few evergreens

IVD Tundra

Slowly growing, low formations, consisting mainly of dwarf-shrubs and graminoids beyond the subpolar tree line.

IVD1 Mainly bryophyte tundra

Dominated by mats or small cushions of mosses (bryophytes).

IVD2 Mainly lichen tundra

Mats of lichen dominating.

IVE Mossy bog formations with dwarf-shrub

Oligotrophic peat accumulations formed by *Sphagnum* or other mosses.

IVE1 Raised bog

By growth of *Sphagnum* species raised above the general ground-water table.

IVE2 Non-raised bog

Not or not very markedly raised above the mineral-water table of the surrounding landscape.

V Herbaceous vegetation

VA Tall graminoid vegetation

Dominant graminoids over 2 m tall. Forb\(^1\) coverage less than 50%.

\(^1\) Forb: non-graminoid/non-woody vegetation

ANNEX VEGETATION 91
VA1 Tall grassland with a tree synusia\(^1\) covering 10-40%

More or less like a very open woodland.

VA2 Tall grassland with a tree synusia covering less than 10%.

VA3 Tall grassland with a synusia of shrubs

VA4 Tall grassland with a woody synusia consisting mainly of tuft plants (usually palms)

VA5 Tall grassland practically without woody synusia

VB Medium tall grassland

The dominant graminoid growth forms are 50 cm to 2 m tall. Forbs cover less than 50%.

VB1 Medium tall grassland with a tree synusia covering 10-40%

VB2 Medium tall grassland with a tree synusia covering less than 10%

VB3 Medium tall grassland with a synusia of shrubs

VB4 Medium tall grassland with an open synusia of tuft plants (usually palms)

VB5 Medium tall grassland practically without woody synusia

VC Short grassland

The dominant graminoid growth forms are less than 50 cm tall. Forbs cover less than 50%.

VC1 Short grassland with a tree synusia covering 10-40%

VC2 Short grassland with a tree synusia covering less than 10%

VC3 Short grassland with a synusia of shrubs

VC4 Short grassland with an open synusia of tuft plants (usually palms)

\(^1\) Synusia: layer
VC5 Short grassland practically without woody synusia
VC6 Short to medium tall mesophytic grassland
VC7 Graminoid tundra

VD Forb vegetation
Mainly forbs, graminoid cover less than 50%.

VD1 Tall forb communities
Dominant forb growth forms are more than 1 m tall.

VD2 Low forb communities
Dominant forb growth forms are less than 1 m tall.

VE Hydromorphic fresh-water vegetation

VE1 Rooted fresh-water communities
VE2 Free floating fresh-water communities
ANNEX 4. ISO country codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Afghanistan</td>
<td>GQ</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>AL</td>
<td>Albania</td>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>DZ</td>
<td>Algeria</td>
<td>ET</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>AS</td>
<td>American Samoa</td>
<td>FK</td>
<td>Falkland Islands</td>
</tr>
<tr>
<td>AD</td>
<td>Andorra</td>
<td>FO</td>
<td>Faroe (Islands)</td>
</tr>
<tr>
<td>AO</td>
<td>Angola</td>
<td>FJ</td>
<td>Fiji</td>
</tr>
<tr>
<td>AI</td>
<td>Anguilla</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AQ</td>
<td>Antarctica</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AG</td>
<td>Antigua and Barbuda</td>
<td>GF</td>
<td>French Guiana</td>
</tr>
<tr>
<td>AR</td>
<td>Argentina</td>
<td>PF</td>
<td>French Polynesia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>TF</td>
<td>French Southern Territories</td>
</tr>
<tr>
<td>AW</td>
<td>Aruba</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GM</td>
<td>Gambia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>DE</td>
<td>Germany, Fed. Rep. of</td>
</tr>
<tr>
<td>BS</td>
<td>Bahamas</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BH</td>
<td>Bahrain</td>
<td>GI</td>
<td>Gibraltar</td>
</tr>
<tr>
<td>BD</td>
<td>Bangladesh</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GL</td>
<td>Greenland</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GD</td>
<td>Grenada</td>
</tr>
<tr>
<td>BJ</td>
<td>Belize</td>
<td>GP</td>
<td>Guadeloupe</td>
</tr>
<tr>
<td>BL</td>
<td>Benin</td>
<td>GU</td>
<td>Guam</td>
</tr>
<tr>
<td>BT</td>
<td>Bhutan</td>
<td>GT</td>
<td>Guatemala</td>
</tr>
<tr>
<td>BO</td>
<td>Bolivia</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BW</td>
<td>Botswana</td>
<td>GW</td>
<td>Guinea-Bissau</td>
</tr>
<tr>
<td>BV</td>
<td>Bouvet Island</td>
<td>GY</td>
<td>Guyana</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HT</td>
<td>Haiti</td>
</tr>
<tr>
<td>IO</td>
<td>British Indian Ocean Territory</td>
<td>HM</td>
<td>Heard and McDonald Islands</td>
</tr>
<tr>
<td>BE</td>
<td>Belize</td>
<td>HM</td>
<td>Heard and McDonald Islands</td>
</tr>
<tr>
<td>BN</td>
<td>Brunei-Darussalam</td>
<td>HK</td>
<td>Hong Kong</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>BU</td>
<td>Burma</td>
<td>IN</td>
<td>India</td>
</tr>
<tr>
<td>BI</td>
<td>Burundi</td>
<td>ID</td>
<td>Indonesia</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IR</td>
<td>Iran, Islamic Republic</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>IQ</td>
<td>Iraq</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>CV</td>
<td>Cape Verde</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>KY</td>
<td>Cayman Islands</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JM</td>
<td>Jamaica</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CL</td>
<td>Chile</td>
<td>JO</td>
<td>Jordan</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KH</td>
<td>Kampuchea, Democratic</td>
</tr>
<tr>
<td>CX</td>
<td>Christmas Island</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CC</td>
<td>Cocos Islands</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CO</td>
<td>Colombia</td>
<td>KI</td>
<td>Kiribati</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Korea, Republic of</td>
</tr>
<tr>
<td>CR</td>
<td>Costa Rica</td>
<td>KW</td>
<td>Kuwait</td>
</tr>
<tr>
<td>HR</td>
<td>Croatia</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LA</td>
<td>Laos, People's Democratic Rep.</td>
</tr>
<tr>
<td>Y</td>
<td>Cyprus</td>
<td>LB</td>
<td>Lebanon</td>
</tr>
<tr>
<td>CS</td>
<td>Czecho-Slovakia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>CI</td>
<td>Cote d'Ivoire</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LY</td>
<td>Libyan Arab Jamahiri</td>
</tr>
<tr>
<td>DJ</td>
<td>Djibouti</td>
<td>Li</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DM</td>
<td>Dominica</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>DO</td>
<td>Dominican Republic</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>TP</td>
<td>East Timor</td>
<td>MO</td>
<td>Macau</td>
</tr>
<tr>
<td>EC</td>
<td>Ecuador</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>EG</td>
<td>Egypt</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>SV</td>
<td>El Salvador</td>
<td>MY</td>
<td>Malaysia</td>
</tr>
<tr>
<td>MV</td>
<td>Maldives</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MT</td>
<td>Malta</td>
<td>MH</td>
<td>Marshall Islands</td>
</tr>
<tr>
<td>MQ</td>
<td>Martinique</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MU</td>
<td>Mauritius</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>FM</td>
<td>Micronesia</td>
<td>MD</td>
<td>Moldova, Republic of</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MS</td>
<td>Montserrat</td>
<td>MA</td>
<td>Morocco</td>
</tr>
<tr>
<td>MZ</td>
<td>Mozambique</td>
<td>NA</td>
<td>Namibia</td>
</tr>
<tr>
<td>NR</td>
<td>Nauru</td>
<td>NP</td>
<td>Nepal</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>AN</td>
<td>Netherlands Antilles</td>
</tr>
<tr>
<td>NT</td>
<td>Neutral Zone</td>
<td>NC</td>
<td>New Caledonia</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>NI</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NG</td>
<td>Nigeria</td>
</tr>
<tr>
<td>NU</td>
<td>Niue</td>
<td>NF</td>
<td>Norfolk Island</td>
</tr>
<tr>
<td>MP</td>
<td>Northern Mariana Islands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>OM</td>
<td>Oman</td>
<td>PK</td>
<td>Pakistan</td>
</tr>
<tr>
<td>PW</td>
<td>Palau</td>
<td>PA</td>
<td>Panama</td>
</tr>
<tr>
<td>PG</td>
<td>Papua New Guinea</td>
<td>PY</td>
<td>Paraguay</td>
</tr>
<tr>
<td>PE</td>
<td>Peru</td>
<td>PH</td>
<td>Philippines</td>
</tr>
<tr>
<td>PN</td>
<td>Pitcairn</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>PR</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>QA</td>
<td>Qatar</td>
<td>RE</td>
<td>Reunion</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>RW</td>
<td>Rwanda</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>WS</td>
<td>Samoa</td>
<td>SM</td>
<td>San Marino</td>
</tr>
<tr>
<td>ST</td>
<td>Sao Tome and Principe</td>
<td>SA</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SC</td>
<td>Seychelles</td>
</tr>
<tr>
<td>SL</td>
<td>Sierra Leone</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SB</td>
<td>Sierra Leone</td>
<td>ZA</td>
<td>South Africa</td>
</tr>
<tr>
<td>SO</td>
<td>Somalia</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>ZA</td>
<td>South Africa</td>
<td>LS</td>
<td>South Africa</td>
</tr>
<tr>
<td>EC</td>
<td>Ecuador</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
</tbody>
</table>

ANNEX COUNTRY CODES 95
DATA ENTRY FORMS

SOTER data entry

<table>
<thead>
<tr>
<th>TERRAIN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SOTER unit_ID</td>
<td>![Blank]</td>
</tr>
<tr>
<td>2 date of data collection</td>
<td>![Blank]</td>
</tr>
<tr>
<td>3 map_ID</td>
<td>![Blank]</td>
</tr>
<tr>
<td>4 minimum elevation</td>
<td>![Blank]</td>
</tr>
<tr>
<td>5 maximum elevation</td>
<td>![Blank]</td>
</tr>
<tr>
<td>6 slope gradient</td>
<td>![Blank]</td>
</tr>
<tr>
<td>7 relief intensity</td>
<td>![Blank]</td>
</tr>
<tr>
<td>8 major landform</td>
<td>![Blank]</td>
</tr>
<tr>
<td>9 regional slope</td>
<td>![Blank]</td>
</tr>
<tr>
<td>10 hypsometry</td>
<td>![Blank]</td>
</tr>
<tr>
<td>11 dissection</td>
<td>![Blank]</td>
</tr>
<tr>
<td>12 general lithology</td>
<td>![Blank]</td>
</tr>
<tr>
<td>13 permanent water surface</td>
<td>![Blank]</td>
</tr>
</tbody>
</table>

TERRAIN COMPONENT

14 SOTER unit_ID	![Blank]
15 terrain component number	![Blank]
16 proportion of SOTER unit	![Blank]
17 terrain component data_ID	![Blank]

ANNEX 5. SOTER data entry forms
<table>
<thead>
<tr>
<th>TERRAIN COMPONENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOTER data entry</td>
</tr>
<tr>
<td>18 terrain component data ID</td>
</tr>
<tr>
<td>19 dominant slope</td>
</tr>
<tr>
<td>20 length of slope</td>
</tr>
<tr>
<td>21 form of slope</td>
</tr>
<tr>
<td>22 local surface form</td>
</tr>
<tr>
<td>23 average height</td>
</tr>
<tr>
<td>24 coverage</td>
</tr>
<tr>
<td>25 surface lithology</td>
</tr>
<tr>
<td>26 texture group non-consolidated parent material</td>
</tr>
<tr>
<td>27 depth to bedrock</td>
</tr>
<tr>
<td>28 surface drainage</td>
</tr>
<tr>
<td>29 depth to groundwater</td>
</tr>
<tr>
<td>30 frequency of flooding</td>
</tr>
<tr>
<td>31 duration of flooding</td>
</tr>
<tr>
<td>32 start of flooding</td>
</tr>
</tbody>
</table>
SOTER data entry

SOIL COMPONENT

<table>
<thead>
<tr>
<th>Field ID</th>
<th>Field Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>SOTER unit ID</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>terrain component number</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>soil component number</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>proportion of SOTER unit</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>profile ID</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>number of reference profiles</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>position in terrain component</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>surface rockiness</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>surface stoniness</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>types of erosion/deposition</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>area affected</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>degree of erosion</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>sensitivity to capping</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>rootable depth</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>relation with other soil components</td>
<td></td>
</tr>
</tbody>
</table>
SOTER data entry form 4

PROFILE

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 profile_ID</td>
<td></td>
</tr>
<tr>
<td>49 profile database_ID</td>
<td></td>
</tr>
<tr>
<td>50 latitude</td>
<td></td>
</tr>
<tr>
<td>51 longitude</td>
<td></td>
</tr>
<tr>
<td>52 elevation</td>
<td></td>
</tr>
<tr>
<td>53 sampling date</td>
<td></td>
</tr>
<tr>
<td>54 lab_ID</td>
<td></td>
</tr>
<tr>
<td>55 drainage</td>
<td></td>
</tr>
<tr>
<td>56 infiltration rate</td>
<td></td>
</tr>
<tr>
<td>57 surface organic matter</td>
<td></td>
</tr>
<tr>
<td>58 classification FAO</td>
<td></td>
</tr>
<tr>
<td>59 classification version</td>
<td></td>
</tr>
<tr>
<td>60 national classification</td>
<td></td>
</tr>
<tr>
<td>61 Soil Taxonomy</td>
<td></td>
</tr>
<tr>
<td>62 phase</td>
<td></td>
</tr>
</tbody>
</table>

HORIZON representative profile (* = mandatory)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 horizon number*</td>
<td></td>
</tr>
<tr>
<td>65 diagnostic horizon*</td>
<td></td>
</tr>
<tr>
<td>66 diagnostic property*</td>
<td></td>
</tr>
<tr>
<td>67 horizon designation</td>
<td></td>
</tr>
<tr>
<td>68 lower depth*</td>
<td></td>
</tr>
<tr>
<td>69 distinctness transition</td>
<td></td>
</tr>
<tr>
<td>70 moist colour*</td>
<td></td>
</tr>
<tr>
<td>71 dry colour</td>
<td></td>
</tr>
<tr>
<td>72 grade of structure</td>
<td></td>
</tr>
<tr>
<td>73 size of structure elements</td>
<td></td>
</tr>
<tr>
<td>74 type of structure*</td>
<td></td>
</tr>
</tbody>
</table>

SOTER MANUAL
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON representative profile (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizon number*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 abundance coarse fragments*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 size of coarse fragments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 very coarse sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 coarse sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 medium sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 fine sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81 very fine sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 total sand*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83 silt*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 clay*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 particle size class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86 bulk density*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87 moisture content at various tensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 hydraulic conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 infiltration rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 pH H₂O*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 pH KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Estimated mandatory (numeric) attributes should be preceded by the character e.
SOTER data entry

<table>
<thead>
<tr>
<th>HORIZON representative profile (continued) (* = mandatory)</th>
<th>profile_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon number*</td>
<td>I I I I I I I I</td>
</tr>
<tr>
<td>92 electrical conductivity</td>
<td>I I I I</td>
</tr>
<tr>
<td>93 exchangeable Ca**</td>
<td>I I I I</td>
</tr>
<tr>
<td>94 exchangeable Mg**</td>
<td>I I I I</td>
</tr>
<tr>
<td>95 exchangeable Na*</td>
<td>I I I I</td>
</tr>
<tr>
<td>96 exchangeable K*</td>
<td>I I I I</td>
</tr>
<tr>
<td>97 exchangeable Al***</td>
<td>I I I I</td>
</tr>
<tr>
<td>98 exchangeable acidity</td>
<td>I I I I</td>
</tr>
<tr>
<td>99 CEC soil*</td>
<td>I I I I</td>
</tr>
<tr>
<td>100 total carbonate equivalent</td>
<td>I I I I</td>
</tr>
<tr>
<td>101 gypsum</td>
<td>I I I I</td>
</tr>
<tr>
<td>102 total carbon*</td>
<td>I I I I</td>
</tr>
<tr>
<td>103 total nitrogen</td>
<td>I I I I</td>
</tr>
<tr>
<td>104 P₂O₅</td>
<td>I I I I</td>
</tr>
<tr>
<td>105 phosphate retention</td>
<td>I I I I</td>
</tr>
<tr>
<td>106 Fe dithionite</td>
<td>I I I I</td>
</tr>
<tr>
<td>107 Al dithionite</td>
<td>I I I I</td>
</tr>
<tr>
<td>108 Fe pyrophosphate</td>
<td>I I I I</td>
</tr>
<tr>
<td>109 Al pyrophosphate</td>
<td>I I I I</td>
</tr>
<tr>
<td>110 clay mineralogy</td>
<td>I I I I</td>
</tr>
</tbody>
</table>

Note: Estimated mandatory (numeric) attributes should be preceded by the character e.
<table>
<thead>
<tr>
<th>HORIZON minimum values</th>
<th>profile_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 horizon number</td>
<td></td>
</tr>
<tr>
<td>75 abundance coarse fragments</td>
<td></td>
</tr>
<tr>
<td>76 size of coarse fragments</td>
<td></td>
</tr>
<tr>
<td>77 very coarse sand</td>
<td></td>
</tr>
<tr>
<td>78 coarse sand</td>
<td></td>
</tr>
<tr>
<td>79 medium sand</td>
<td></td>
</tr>
<tr>
<td>80 fine sand</td>
<td></td>
</tr>
<tr>
<td>81 very fine sand</td>
<td></td>
</tr>
<tr>
<td>82 total sand</td>
<td></td>
</tr>
<tr>
<td>83 silt</td>
<td></td>
</tr>
<tr>
<td>84 clay</td>
<td></td>
</tr>
<tr>
<td>85 particle size class</td>
<td></td>
</tr>
<tr>
<td>86 bulk density</td>
<td></td>
</tr>
<tr>
<td>87 moisture content at various tensions</td>
<td></td>
</tr>
<tr>
<td>88 hydraulic conductivity</td>
<td></td>
</tr>
<tr>
<td>89 infiltration rate</td>
<td></td>
</tr>
<tr>
<td>90 pH H₂O</td>
<td></td>
</tr>
<tr>
<td>91 pH KCl</td>
<td></td>
</tr>
<tr>
<td>92 electrical conductivity</td>
<td></td>
</tr>
<tr>
<td>HORIZON minimum values (continued)</td>
<td>profile_ID</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>64 horizon number</td>
<td></td>
</tr>
<tr>
<td>93 exchangeable Ca**</td>
<td></td>
</tr>
<tr>
<td>94 exchangeable Mg**</td>
<td></td>
</tr>
<tr>
<td>95 exchangeable Na*</td>
<td></td>
</tr>
<tr>
<td>96 exchangeable K*</td>
<td></td>
</tr>
<tr>
<td>97 exchangeable Al**</td>
<td></td>
</tr>
<tr>
<td>98 exchangeable acidity</td>
<td></td>
</tr>
<tr>
<td>99 CEC soil*</td>
<td></td>
</tr>
<tr>
<td>100 total carbonate equivalent</td>
<td></td>
</tr>
<tr>
<td>101 gypsum</td>
<td></td>
</tr>
<tr>
<td>102 total carbon*</td>
<td></td>
</tr>
<tr>
<td>103 total nitrogen</td>
<td></td>
</tr>
<tr>
<td>104 P_2O_5</td>
<td></td>
</tr>
<tr>
<td>105 phosphate retention</td>
<td></td>
</tr>
<tr>
<td>106 Fe dithionite</td>
<td></td>
</tr>
<tr>
<td>107 Al dithionite</td>
<td></td>
</tr>
<tr>
<td>108 Fe pyrophosphate</td>
<td></td>
</tr>
<tr>
<td>109 Al pyrophosphate</td>
<td></td>
</tr>
<tr>
<td>SOTER data entry</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>HORIZON maximum values</td>
<td>profile_ID</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>64 horizon number</td>
<td></td>
</tr>
<tr>
<td>75 abundance coarse fragments</td>
<td></td>
</tr>
<tr>
<td>75 size of coarse fragments</td>
<td></td>
</tr>
<tr>
<td>77 very coarse sand</td>
<td></td>
</tr>
<tr>
<td>78 coarse sand</td>
<td></td>
</tr>
<tr>
<td>79 medium sand</td>
<td></td>
</tr>
<tr>
<td>80 fine sand</td>
<td></td>
</tr>
<tr>
<td>81 very fine sand</td>
<td></td>
</tr>
<tr>
<td>82 total sand</td>
<td></td>
</tr>
<tr>
<td>83 silt</td>
<td></td>
</tr>
<tr>
<td>84 clay</td>
<td></td>
</tr>
<tr>
<td>85 particle size class</td>
<td></td>
</tr>
<tr>
<td>86 bulk density</td>
<td></td>
</tr>
<tr>
<td>87 moisture content at various tensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>88 hydraulic conductivity</td>
<td></td>
</tr>
<tr>
<td>89 infiltration rate</td>
<td></td>
</tr>
<tr>
<td>90 pH H₂O</td>
<td></td>
</tr>
<tr>
<td>91 pH KCl</td>
<td></td>
</tr>
<tr>
<td>92 electrical conductivity</td>
<td></td>
</tr>
</tbody>
</table>
SOTER data entry

<table>
<thead>
<tr>
<th>HORIZON maximum values</th>
<th>profile_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon number</td>
<td>L</td>
</tr>
<tr>
<td>93 exchangeable Ca**</td>
<td>L</td>
</tr>
<tr>
<td>94 exchangeable Mg**</td>
<td>L</td>
</tr>
<tr>
<td>95 exchangeable Na*</td>
<td>L</td>
</tr>
<tr>
<td>96 exchangeable K*</td>
<td>L</td>
</tr>
<tr>
<td>97 exchangeable Al***</td>
<td>L</td>
</tr>
<tr>
<td>98 exchangeable acidity</td>
<td>L</td>
</tr>
<tr>
<td>99 CEC soil</td>
<td>L</td>
</tr>
<tr>
<td>100 total carbonate equivalent</td>
<td>L</td>
</tr>
<tr>
<td>101 gypsum</td>
<td>L</td>
</tr>
<tr>
<td>102 total carbon</td>
<td>L</td>
</tr>
<tr>
<td>103 total nitrogen</td>
<td>L</td>
</tr>
<tr>
<td>104 P_O_4</td>
<td>L</td>
</tr>
<tr>
<td>105 phosphate retention</td>
<td>L</td>
</tr>
<tr>
<td>106 Fe dithionite</td>
<td>L</td>
</tr>
<tr>
<td>107 Al dithionite</td>
<td>L</td>
</tr>
<tr>
<td>108 Fe pyrophosphate</td>
<td>L</td>
</tr>
<tr>
<td>109 Al pyrophosphate</td>
<td>L</td>
</tr>
<tr>
<td>LAND USE</td>
<td>VEGETATION</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1 SOTER unit ID</td>
<td>1 SOTER unit ID</td>
</tr>
<tr>
<td>2 date of observation</td>
<td>2 date of observation</td>
</tr>
<tr>
<td>3 land use</td>
<td>3 vegetation</td>
</tr>
<tr>
<td>4 proportion of SOTER unit</td>
<td>4 proportion of SOTER unit</td>
</tr>
<tr>
<td>SOTER data entry</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>SOURCE MAP</td>
<td></td>
</tr>
<tr>
<td>1 map_ID</td>
<td>[] [] [] [] [] [] [] [] [] [] [] [] [] []</td>
</tr>
<tr>
<td>2 map title</td>
<td></td>
</tr>
<tr>
<td>3 year</td>
<td>[] [] [] [] [] []</td>
</tr>
<tr>
<td>4 scale</td>
<td>1: [] [] [] [] [] [] []</td>
</tr>
<tr>
<td>5 minimum latitude</td>
<td>[] [] [] [] [] [] []</td>
</tr>
<tr>
<td>6 minimum longitude</td>
<td>[] [] [] [] [] [] []</td>
</tr>
<tr>
<td>7 maximum latitude</td>
<td>[] [] [] [] [] [] []</td>
</tr>
<tr>
<td>8 maximum longitude</td>
<td>[] [] [] [] [] [] []</td>
</tr>
<tr>
<td>9 type of map</td>
<td>[] [] [] []</td>
</tr>
</tbody>
</table>

SOTER MANUAL
SOTER data entry

LABORATORY
1. lab_ID
2. laboratory name

LABORATORY METHODS
3. lab_ID
4. date
5. attribute
6. method of analysis_ID

ANALYTICAL METHOD
7. method of analysis_ID
8. description

PROFILE DATABASE
1. soil profile database_ID
2. name of institute
SOTER data entry

CLIMATE STATION

1. climate station ID
2. climate station name
3. latitude
4. longitude
5. altitude

CLIMATE DATA

<table>
<thead>
<tr>
<th>climate station ID</th>
<th>12 January</th>
<th>18 January</th>
<th>24 January</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind of data</td>
<td>13 February</td>
<td>19 February</td>
<td>25 February</td>
</tr>
<tr>
<td>source ID</td>
<td>14 March</td>
<td>20 March</td>
<td>26 March</td>
</tr>
<tr>
<td>first year</td>
<td>15 April</td>
<td>21 April</td>
<td>27 April</td>
</tr>
<tr>
<td>last year</td>
<td>16 May</td>
<td>22 May</td>
<td>28 May</td>
</tr>
<tr>
<td>years</td>
<td>17 June</td>
<td>23 June</td>
<td>29 June</td>
</tr>
</tbody>
</table>

DATA SOURCE

25. source ID
26. source name
LITERATURE

resource study of tropical America. CIAT, Cali.

CIAT, Cali.

Agriculture Canada, Research Branch, Ottawa.

p.46.

Rome.

Inkata Press, Melbourne. 300 p.

ISRIC, 1990a. SOTER Procedures manual for small-scale map and database compilation. 3rd version. Ed. by

- , 1990b. Proceedings of the international workshop on procedures manual revisions for the Global Soils and

conditions. Ed. by V.W.P. van Engelen and J.H.M. Pulles. Working paper and preprint 91/3, ISRIC,
Wageningen, 92p.

ISSS, 1986a. Proceedings of an international workshop on the structure of a digital international soil resources
map annex database. Ed. by M.F. Baumgardner and L.R. Oldeman. SOTER report 1, ISSS,
Wageningen, 138p.

- , 1986b. Project proposal "World soils & terrain digital database at a scale 1:1 M (SOTER)". Ed. by M.F.
Baumgardner. ISSS, Wageningen, 23p.

112

SOTER MANUAL

GLOSSARY OF TERMS

attribute data Non-graphic information on elements in a GIS. In this manual: associated with SOTER units.
database A computerized recordkeeping system.
database structure The way in which data are organized in a database.
backup A copy of a file or of a whole disk in case the original is lost/damaged.
DBMS Database Management System; a system for management and manipulation a database.
geo-referenced data Information that has a precise location (coordinates).
GIS Geographic(al) Information System = a system of hardware, software and procedures designated to support the capture, management, manipulation, analysis, modelling and display of spatially referenced data.
input The process of entering data.
mapping unit a set of areas (polygons) on a map that represent a well-defined feature or set of features; mapping units are described by the map legend.
polygon delineated area on a map
primary key attribute or combination of attributes that uniquely identify a record in a table/file.
RDBMS Relational Database Management System; a computerized recordkeeping system in which the data are structured in sets of records so that relationships between data can be used for the management and manipulation. The data files are perceived as tables.
SOTER unit special type of mapping unit; a set of areas (polygons) on a map that have a distinctive, often repetitive pattern of landform, surface form, parent material and soil.
topology The way in which geographic elements are linked together (neighbouring elements, enclosed elements).