Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 4 / 4

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==stem canker
Check title to add to marked list
Diaporthe species associated with Vaccinium, with specific reference to Europe
Lombard, L. ; Leeuwen, G.C.M. van; Guarnaccia, V. ; Polizzi, G. ; Rijswick, P.C.J. van; Rosendahl, K.C.H.M. ; Gabler, J. ; Crous, P.W. - \ 2014
Phytopathologia Mediterranea 53 (2014)2. - ISSN 0031-9465 - p. 287 - 299.
phomopsis-vaccinii - maximum-likelihood - south-africa - stem canker - blueberry - grapevines - cranberry - australafricana - inference - diseases
Species of the genus Vaccinium are commercially cultivated in Europe for their berries, which are highly valued for dietary and pharmaceutical properties. Cultivation is severely limited due to a range of fungal diseases, especially those caused by species of Diaporthe. A number of Diaporthe isolates have been collected from Vaccinium growing regions in Europe, and initially identified as D. vaccinii based on host association. Using DNA sequence inference of the combined ß-tubulin, calmodulin, translation elongation factor 1-alpha and the internal transcribed spacer region of the nuclear rDNA, along with morphological characteristics, six species were characterised. Diaporthe eres, D. vaccinii and D. viticola are known species and three novel taxa are described here as D. asheicola, D. baccae and D. sterilis. This study is the first confirmed report of D. vaccinii in Latvia and the Netherlands.
Redisposition of Phoma-like anamorphs in Pleosporales
Gruyter, J. de; Woudenberg, J.H.C. ; Aveskamp, M.M. ; Verkley, G.J.M. ; Groenewald, J.Z. ; Crous, P.W. - \ 2013
Studies in Mycology 75 (2013). - ISSN 0166-0616 - p. 1 - 36.
ribosomal dna-sequences - winter oilseed rape - 7 mu-m - leptosphaeria-maculans - stem canker - molecular phylogeny - section plenodomus - small conidia - monograph - taxa
The anamorphic genus Phoma was subdivided into nine sections based on morphological characters, and included teleomorphs in Didymella, Leptosphaeria, Pleospora and Mycosphaerella, suggesting the polyphyly of the genus. Recent molecular, phylogenetic studies led to the conclusion that Phoma should be restricted to Didymellaceae. The present study focuses on the taxonomy of excluded Phoma species, currently classified in Phoma sections Plenodomus, Heterospora and Pilosa. Species of Leptosphaeria and Phoma section Plenodomus are reclassified in Plenodomus, Subplenodomus gen. nov., Leptosphaeria and Paraleptosphaeria gen. nov., based on the phylogeny determined by analysis of sequence data of the large subunit 28S nrDNA (LSU) and Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS). Phoma heteromorphospora, type species of Phoma section Heterospora, and its allied species Phoma dimorphospora, are transferred to the genus Heterospora stat. nov. The Phoma acuta complex (teleomorph Leptosphaeria doliolum), is revised based on a multilocus sequence analysis of the LSU, ITS, small subunit 18S nrDNA (SSU), ß-tubulin (TUB), and chitin synthase 1 (CHS-1) regions. Species of Phoma section Pilosa and allied Ascochyta species were determined to belong to Pleosporaceae based on analysis of actin (ACT) sequence data. Anamorphs that are similar morphologically to Phoma and described in Ascochyta, Asteromella, Coniothyrium, Plectophomella, Pleurophoma and Pyrenochaeta are included in this study. Phoma-like species, which grouped outside the Pleosporineae based on a LSU sequence analysis, are transferred to the genera Aposphaeria, Paraconiothyrium and Westerdykella. The genera Medicopsis gen. nov. and Nigrograna gen. nov. are introduced to accommodate the medically important species formerly known as Pyrenochaeta romeroi and Pyrenochaeta mackinnonii, respectively.
Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations
Rouxel, T. ; Grandaubert, J. ; Hane, J.K. ; Hoede, C. ; Wouw, A. ; Couloux, A. ; Dominguez, V. ; Anthouard, V. ; Bally, P. ; Bourras, S. ; Cozijnsen, A.J. ; Ciuffetti, L.M. ; Degrave, A. ; Dilmaghani, A. ; Duret, L. ; Fudal, L. ; Goodwin, S.B. ; Gout, L. ; Glaser, N. ; Linglin, J. ; Kema, G.H.J. ; Lapalu, N. ; Lawrence, C.B. ; May, K. ; Meyer, M. ; Ollivier, B. ; Poulain, J. ; Schoch, C.L. ; Simon, A. ; Spatafora, J.W. ; Stachowiak, A. ; Turgeon, B.G. ; Tyler, B.M. ; Vincent, D. ; Weissenbach, J. ; Amselem, J. ; Quesneville, H. ; Oliver, R.P. ; Wincker, P. ; Balesdent, M.H. ; Howlett, B.J. - \ 2011
Nature Communications 2 (2011). - ISSN 2041-1723 - p. 202 - 202.
transposable elements - molecular evolution - pathogen effectors - brassica-napus - gene-transfer - oilseed rape - stem canker - avirulence - plant - fungal
Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints
Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance
Aveskamp, M.M. ; Gruyter, J. de; Crous, P.W. - \ 2008
Fungal Diversity 31 (2008). - ISSN 1560-2745 - p. 1 - 18.
polymerase-chain-reaction - maculans species complex - salal gaultheria-shallon - leptosphaeria-maculans - oilseed rape - didymella-bryoniae - stem canker - section plenodomus - dna-sequences - causal agent
Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the ¿Phoma Identification Manual¿ which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.