Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: metisnummer==1010080
    Check title to add to marked list
    Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-ATPase
    Duarte, A.M. ; Wolfs, C.J.A.M. ; Nuland, N.A.J. van; Harrison, M.A. ; Findlay, J.B.C. ; Mierlo, C.P.M. van; Hemminga, M.A. - \ 2007
    Biochimica et Biophysica Acta. Biomembranes 1768 (2007)2. - ISSN 0005-2736 - p. 218 - 227.
    nuclear-magnetic-resonance - sarcoplasmic-reticulum ca2+-atpase - protein secondary structure - circular-dichroism spectra - sodium dodecyl-sulfate - m13 coat protein - v-atpase - vacuolar (h+)-atpases - membrane-proteins - nmr-spectroscopy
    Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an ¿-helical conformation for peptide MTM7 and in DMSO three ¿-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an ¿-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.