Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Genetics of the temperature-size rule in C.elegans
    Kammenga, J.E. ; Doroszuk, A. ; Riksen, J.A.G. ; Hazendonk, E. ; Spiridon, L.N. ; Petrescu, A.J. ; Tijsterman, M. ; Plasterk, R.H.A. ; Bakker, J. - \ 2007
    In: XI Congress of the European Society for Evolutionary Biology, Uppsala, Sweden, 20 - 25 August, 2007. - Uppsala : - p. 358 - 358.
    A Caenorhabditis elegans Wild Type Defies the Temperature-Size Rule Owing to a Single Nucleotide Polymorphism in tra-3
    Kammenga, J.E. ; Doroszuk, A. ; Riksen, J.A.G. ; Hazendonk, E. ; Spiridon, L.N. ; Petrescu, A.J. ; Tijsterman, M. ; Plasterk, R.H.A. ; Bakker, J. - \ 2007
    Plos Genetics 3 (2007)3. - ISSN 1553-7404
    quantitative trait loci - secondary structure prediction - life-history puzzle - drosophila-melanogaster - body-size - cell-size - c-elegans - transcription factor - sex-determination - cold-acclimation
    Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature¿size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature¿size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature¿size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 × CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature¿size rule, which has puzzled biologists for decades.
    Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans
    Li, Y. ; Alda Alvarez, O. ; Gutteling, E.W. ; Tijsterman, M. ; Fu, J. ; Riksen, J.A.G. ; Hazendonk, E. ; Prins, J.C.P. ; Plasterk, R.H.A. ; Jansen, R.C. ; Breitling, R. ; Kammenga, J.E. - \ 2006
    Plos Genetics 2 (2006)12. - ISSN 1553-7404
    quantitative trait loci - caenorhabditis-elegans - natural variation - dna microarray - yeast - map - identification - polymorphisms - reveals
    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16°C and 24°C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii) and N2 (Bristol). No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24°C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.