Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1020734
Check title to add to marked list
Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor
Weelink, S.A.B. ; Tan, N.C.G. ; Broeke, H. ten; Kieboom, C. van den; Doesburg, W.C.J. van; Langenhoff, A.A.M. ; Gerritse, J. ; Junca, H. ; Stams, A.J.M. - \ 2008
Applied and Environmental Microbiology 74 (2008)21. - ISSN 0099-2240 - p. 6672 - 6681.
reducing enrichment culture - sp nov. - molecular characterization - gen. nov. - pseudomonas-chloritidismutans - reductive dechlorination - anaerobic degradation - microbial communities - sequence alignment - comb-nov
A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 microm wide and 1 to 2 microm long, are motile, and stain gram negative. Strain BC grows on benzene and some other aromatic compounds with oxygen or in the absence of oxygen with chlorate as the electron acceptor. Strain BC is a denitrifying bacterium, but it is not able to grow on benzene with nitrate. The closest cultured relative is Alicycliphilus denitrificans type strain K601, a cyclohexanol-degrading nitrate-reducing betaproteobacterium. Chlorate reductase (0.4 U/mg protein) and chlorite dismutase (5.7 U/mg protein) activities in cell extracts of strain BC were determined. Gene sequences encoding a known chlorite dismutase (cld) were not detected in strain BC by using the PCR primers described in previous studies. As physiological and biochemical data indicated that there was oxygenation of benzene during growth with chlorate, a strategy was developed to detect genes encoding monooxygenase and dioxygenase enzymes potentially involved in benzene degradation in strain BC. Using primer sets designed to amplify members of distinct evolutionary branches in the catabolic families involved in benzene biodegradation, two oxygenase genes putatively encoding the enzymes performing the initial successive monooxygenations (BC-BMOa) and the cleavage of catechol (BC-C23O) were detected. Our findings suggest that oxygen formed by dismutation of chlorite can be used to attack organic molecules by means of oxygenases, as exemplified with benzene. Thus, aerobic pathways can be employed under conditions in which no external oxygen is supplied
Physiological and phylogenetic characterization of a stable chlorate-reducing benzene-degrading microbial community
Weelink, S.A.B. ; Tan, N.C.G. ; Broeke, H. ten; Doesburg, W.C.J. van; Langenhoff, A.A.M. ; Gerritse, J. ; Stams, A.J.M. - \ 2007
FEMS microbiology ecology 60 (2007)2. - ISSN 0168-6496 - p. 312 - 321.
gradient gel-electrophoresis - dechloromonas strain rcb - molecular characterization - sp-nov. - reductive dechlorination - biodegradation - bacteria - nitrate - degradation - toluene
stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20¿1650 times higher than reported for anaerobic benzene degradation. Denaturing gradient gel electrophoresis of part of the 16S rRNA gene, cloning and sequencing showed that the culture had a stable composition after the seventh transfer. Five bacterial clones were further analyzed. Two clones corresponded to bacteria closely related to Alicycliphilus denitrificans K601. The three other clones corresponded to bacteria closely related to Zoogloea resiniphila PIV-3A2w, Mesorhizobium sp. WG and Stenotrophomonas acidaminiphila. DGGE analysis of cultures grown with different electron donors and acceptors indicated that the bacterium related to Alicycliphilus denitrificans K601 is able to degrade benzene coupled to chlorate reduction. The role of the other bacteria could not be conclusively determined. The bacterium related to Mesorhizobium sp. WG can be enriched with benzene and oxygen, but not with acetate and chlorate, while the bacterium related to Stenotrophomonas acidaminophila grows with acetate and chlorate, but not with benzene and oxygen. As oxygen is produced during chlorate reduction, an aerobic pathway of benzene degradation is most likely.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.