Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: metisnummer==1022677
    Check title to add to marked list
    Biochemical ripening of dredged sediments. part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation
    Vermeulen, J. ; Gool, M.P.M. van; Dorleijn, A.S. ; Joziasse, J. ; Bruning, H. ; Rulkens, W.H. ; Grotenhuis, J.T.C. - \ 2007
    Environmental Toxicology and Chemistry 26 (2007)12. - ISSN 0730-7268 - p. 2530 - 2539.
    microbial biomass - marine-sediments - soil - biodegradation - carbon - decomposition - turnover - glucose - litter - growth
    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Quantitative data describing these processes are scarce. Therefore, aerobic oxidation and mineralization of five previously anaerobic dredged sediments were studied during a 160-d laboratory incubation experiment at 30°C. A double exponential decay model could adequately describe sulfur oxidation and OM mineralization kinetics. During the first 7 d of incubation, 23 to 80% of the total sulfur was oxidized, after which no further sulfur oxidation was observed. Oxygen used for sulfur oxidation amounted up to 95% of the total oxygen uptake in the first 7 d and up to 45% of the oxygen uptake during the entire incubation period. Mineralization rates of the rapidly mineralizable OM fractions that degraded during the first 14 to 28 d of incubation were 102 to 103 times higher than the mineralization rates of the slowly mineralizable OM during the remaining period. First-order mineralization rates of the slowly mineralizable OM were 0.22 × 10¿3 to 0.54 × 10¿3 d¿1 and can be compared with those of terrestrial soils. Yields of biomass on substrate ranged from 0.08 to 0.45 g Cbiomass/g COM and appeared to be higher for rapidly mineralizing OM than for slowly mineralizing OM. The results of this study can be used to optimize conditions during temporary disposal of sediments, to estimate the potential decrease in OM, and for future studies on the possible link between OM mineralization and degradation of hydrophobic organic contaminants.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.