Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon
    Broadbent, E.N. ; Zambrano, A.M.A. ; Asner, G.P. ; Soriano, M. ; Field, C.B. ; Souza, H.R. de; Pena Claros, M. ; Adams, R.I. ; Dirzo, R. ; Giles, L. - \ 2014
    PLoS ONE 9 (2014)2. - ISSN 1932-6203 - 23 p.
    carbon-isotope discrimination - tropical rain-forests - n-15 natural-abundance - northeastern costa-rica - below-ground carbon - land-use change - n-p ratios - secondary forest - organic-matter - brazilian amazon
    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar d13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil d13C dynamics were largely constrained by plant species composition. Foliar d15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
    Temporal evolution of the European forest sector carbon sink from 1950 to 1999
    Nabuurs, G.J. ; Schelhaas, M.J. ; Mohren, G.M.J. ; Field, C.B. - \ 2003
    Global Change Biology 9 (2003)2. - ISSN 1354-1013 - p. 152 - 160.
    soil organic-matter - co2 - dioxide - balance - land - sensitivity - deposition - ecosystem - emissions - nitrogen
    Estimates of the role of the European terrestrial biosphere in the global carbon cycle still vary by a factor 10. This is due to differences in methods and assumptions employed, but also due to difference in reference periods of the studies. The magnitude of the sink varies between years because of inter-annual variation of short-term climate, but also due to long-term trends in development of the vegetation and its management. For this purpose, we present the results of an application of a carbon bookkeeping model to the forest sector of the European forests from 1950 to 1999. The analysis includes the compartments trees, soils, and wood products. The model uses statistics on European (30 countries excl. CIS) stemwood volume increment, forest area change, fellings, wood products and their international trade, and natural disturbances, supplemented with conversion coefficients, soil parameters and information on management. An (almost uninterrupted) increasing sink (Net Biome Production) in the European forest sector was found, increasing from 0.03 Pg C year (-1) in the 1950s to 0.14 Pg C year (-1) in the 1990s (for resp. 132 million hectares and 140 million hectares of forest). The sink in the tree and the soil compartment were approximately of the same size until 1970. After the 1970s the size of the sink in the tree biomass increases quickly, causing the tree biomass to account for some two thirds of the total sink in the 1990s. The results as presented here have to be regarded with caution especially with regard to the early decades of the analysis and with regard to the soil compartment.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.