Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 10 / 10

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development
    Cankar, K. ; Kortstee, A.J. ; Toonen, M.A.J. ; Wolters-Arts, M. ; Houbein, R. ; Mariani, C. ; Ulvskov, P. ; Jorgensen, B. ; Schols, H.A. ; Visser, R.G.F. ; Trindade, L.M. - \ 2014
    Plant Biotechnology Journal 12 (2014)4. - ISSN 1467-7644 - p. 492 - 502.
    in-vivo expression - mechanical-properties - potato pectin - arabidopsis - gene - galactan - growth - biosynthesis - mutants - tubers
    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.
    Genomic analysis of the native European Solanum species, S. dulcamara
    Agostino, N.D. ; Golas, T. ; Geest, H. van; Bombarely, A. ; Dawood, T. ; Zethof, J. ; Driedonks, N. ; Wijnker, T.G. ; Bargsten, J. ; Nap, J.P. ; Mariani, C. ; Rieu, I. - \ 2013
    BMC Genomics 14 (2013). - ISSN 1471-2164 - 14 p.
    phytophthora-infestans - solanaceae - identification - evolution - polymorphism - sequence - tomato - potato - genes
    Background - Solanum dulcamara (bittersweet, climbing nightshade) is one of the few species of the Solanaceae family native to Europe. As a common weed it is adapted to a wide range of ecological niches and it has long been recognized as one of the alternative hosts for pathogens and pests responsible for many important diseases in potato, such as Phytophthora. At the same time, it may represent an alternative source of resistance genes against these diseases. Despite its unique ecology and potential as a genetic resource, genomic research tools are lacking for S. dulcamara. We have taken advantage of next-generation sequencing to speed up research on and use of this non-model species. Results - In this work, we present the first large-scale characterization of the S. dulcamara transcriptome. Through comparison of RNAseq reads from two different accessions, we were able to predict transcript-based SNP and SSR markers. Using the SNP markers in combination with genomic AFLP and CAPS markers, the first genome-wide genetic linkage map of bittersweet was generated. Based on gene orthology, the markers were anchored to the genome of related Solanum species (tomato, potato and eggplant), revealing both conserved and novel chromosomal rearrangements. This allowed a better estimation of the evolutionary moment of rearrangements in a number of cases and showed that chromosomal breakpoints are regularly re-used. Conclusion - Knowledge and tools developed as part of this study pave the way for future genomic research and exploitation of this wild Solanum species. The transcriptome assembly represents a resource for functional analysis of genes underlying interesting biological and agronomical traits and, in the absence of the full genome, provides a reference for RNAseq gene expression profiling aimed at understanding the unique biology of S. dulcamara. Cross-species orthology-based marker selection is shown to be a powerful tool to quickly generate a comparative genetic map, which may speed up gene mapping and contribute to the understanding of genome evolution within the Solanaceae family.
    ABA-deficiency results in reduced plant and fruit size in tomato
    Nitsch, L. ; Kohlen, W. ; Oplaat, C. ; Charnikhova, T. ; Cristescu, S. ; Michieli, P. ; Wolters-Arts, M. ; Bouwmeester, H.J. ; Mariani, C. ; Vriezen, W.H. ; Rieu, I. - \ 2012
    Journal of Plant Physiology 169 (2012)9. - ISSN 0176-1617 - p. 878 - 883.
    abscisic-acid biosynthesis - shoot growth - arabidopsis-thaliana - endogenous aba - ethylene - mutants - drought - stress - gene - expression
    Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.
    A new tetraploid species of Solanum section Solanum (Solanaceae) from Tanzania
    Manoko, M.L.K. ; Weerden, van der, G.M. ; Berg, van den, R.G. ; Mariani, C. - \ 2012
    Phytokeys 16 (2012). - ISSN 1314-2011 - p. 65 - 74.
    Solanum umalilaense Manoko sp. nov. (Solanaceae) is described from the Umalila area, in the southern highlands of Tanzania. Its novelty is supported with both morphological and AFLP data. Phenetic and phylogenetic analyses place Solanum umalilaense as a unique and well-supported taxon among tetraploid species of Solanum sect. Solanum from Africa. It can be distinguished from other African species by its extremely developed branching, each branch producing many multi-flowered inflorescences, flowers with short calyx lobes and its persistent, small, light yellowish brown fruits
    Role of Solanum dulcamara L. in Potato Late Blight Epidemiology
    Golas, T.M. ; Weerden, G.M. van der; Berg, R.G. van den; Mariani, C. ; Allefs, J.J.H.M. - \ 2010
    Potato Research 53 (2010)1. - ISSN 0014-3065 - p. 69 - 81.
    infestans mont debary - nevado-de-toluca - phytophthora-infestans - natural occurrence - solanaceous hosts - western slopes - resistance - plant - inoculation - strains
    Four sites with naturally growing Solanum dulcamara were surveyed during 2006 and 2007 for the presence of late blight. Despite 2 years of observations, no late blight was detected among natural populations of bittersweet. Nevertheless, repeated infections occurred on few S. dulcamara plants from a collection growing in a botanical garden in the same years. These plants were used to investigate the possibility of survival of the inoculum between seasons. In the respective years, a set of 21 and 52 S. dulcamara accessions inoculated with Phytophthora infestans under field conditions resulted in a wide range of responses to the disease. More susceptible reactions were found among genotypes collected at greater distance from commercial potato fields indicating the possibility of genetic selection caused by P. infestans. However, both scarceness of natural infections and no overwintering, suggest that bittersweet may not play a role in late blight epidemiology
    Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara
    Golas, T.M. ; Sikkema, A. ; Gros, J. ; Feron, R.M.C. ; Berg, R.G. van den; Weerden, G.M. van der; Mariani, C. ; Allefs, J.J.H.M. - \ 2010
    Theoretical and Applied Genetics 120 (2010)4. - ISSN 0040-5752 - p. 797 - 808.
    late-blight resistance - broad-spectrum resistance - race-specific resistance - potato late blight - r-gene - disease-resistance - chromosome-ix - bulbocastanum - tomato - locus
    Initial screening of 14 Solanum dulcamara accessions enabled the identification of individuals resistant and susceptible to Phytophthora infestans. Crosses between contrasting genotypes resulted in three F2–BC1 populations segregating for resistance to late blight in a laboratory assay and under field conditions. Genetic profiling of one of these populations using 128 AFLP primers generated three markers linked to the resistant phenotype. Blast analysis of the sequenced markers resulted in a plausible gene position on the distal end of the long arm of chromosome 9 that could be confirmed by CAPS markers. Thus, we describe a first resistant gene, named Rpi-dlc1, from S. dulcamara, a Solanum species native to Europe. In addition, one population was tested for broadness of resistance responses using a set of seven additional P. infestans isolates, varying in virulence. This indicated the possible presence of additional Rpi genes.
    Genetic structure of European accessions of Solanum dulcamara L. (Solanaceae)
    Golas, T.M. ; Feron, R.M.C. ; Berg, R.G. van den; Weerden, G.M. van der; Mariani, C. ; Allefs, J.J.H.M. - \ 2010
    Plant Systematics and Evolution 285 (2010)1-2. - ISSN 0378-2697 - p. 103 - 110.
    phytophthora-infestans - aflp - populations - nigrum
    Solanum dulcamara (bittersweet) is one of the few native species of Solanum present in Europe. It is a common weed that occupies a wide range of habitats and is often found in the direct vicinity of cultivated potatoes (Solanum tuberosum), where it could transmit diseases. A broad sampling of European S. dulcamara accessions was carried out to gain insight into the population structure and crossing preferences of this species. Three amplified fragment length polymorphism (AFLP®) primer combinations generating 288 polymorphic fragments were used to analyze 79 bittersweet accessions (245 individuals). Dendrograms revealed a low level of genetic polymorphism in the bittersweet populations, caused partially by the out-crossing nature of this species
    Genetic diversity of the African hexaploid species Solanum scabrum Mill. and S. nigrum L. (Solanaceae)
    Manoko, M.L.K. ; Berg, R.G. van den; Feron, R.M.C. ; Weerden, G.M. van der; Mariani, C. - \ 2008
    Genetic Resources and Crop Evolution 55 (2008)3. - ISSN 0925-9864 - p. 409 - 418.
    fragment length polymorphism - aflp analysis - wild relatives
    Two hexaploid species of Solanum sect. Solanum are present in Africa: Solanum scabrum and S. nigrum. Solanum scabrum is a widely cultivated species and is used as a leafy vegetable, as a source of medicine and as a source of ink dye. In previous studies a wide range of morphological diversity has been reported in this species and in some studies subspecies have been proposed. Subspecies are also recognized in S. nigrum. However, it has not been established whether or not the morphological differences are reflected at the genomic level. The present study applies AFLPs to study the genetic diversity in S. scabrum and its relationship to geographical provenance, morphological differences and the possible existence of subspecies within S. scabrum and S. nigrum. The data obtained were analyzed with cluster analysis (using UPGMA and NJ). The results indicate that the genetic variation within S. scabrum was higher within accessions than between accessions. Accessions did not cluster according to their geographical provenance, indicating that accessions from different geographical areas were not significantly different genetically. The clustering reflected neither morphological differences nor domestication status (cultivated or wild). The morphological differences exhibited by S. scabrum could be due to selection by farmers for different plant types. The AFLP derived clustering pattern did not segregate the subspecies recognized in S. scabrum and S. nigrum into separate subclusters.
    AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu strictio (Solanaceae)
    Manoko, M.L.K. ; Berg, R.G. van den; Feron, R.M.C. ; Weerden, G.M. van der; Mariani, C. - \ 2007
    Plant Systematics and Evolution 267 (2007)1-4. - ISSN 0378-2697 - p. 1 - 11.
    genetic-relationships - l. - biosystematics - relatives - homology - barley - wild
    This study was aimed at examining the relationships between the African material of Solanum americanum (also designated as S. nodiflorum), accessions of this taxon from other geographical areas, and American S. americanum using AFLP markers. 96 individuals representing 39 accessions of S. americanum sensu lato and related diploid species from the widest possible geographical range, and one accession of S. dulcamara (as outgroup) were used. The AFLP results suggested that American S. americanum differs from S. nodiflorum and that the material investigated in this study can be assigned to three different species: S. americanum sensu stricto, S. nodiflorum and a Solanum species from Brazil. These species can be differentiated based on a combination of floral and fruit characteristics.
    Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco
    Bots, M.L. ; Vergeldt, F.J. ; Wolters-Arts, M. ; Weterings, K. ; As, H. van; Mariani, C. - \ 2005
    Plant Physiology 137 (2005)3. - ISSN 0032-0889 - p. 1049 - 1056.
    jasmonic acid biosynthesis - membrane-permeability - arabidopsis-thaliana - brassica-oleracea - channel proteins - gene-expression - osmotic-stress - male-sterility - water - plants
    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.