Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1056500
Check title to add to marked list
Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts
Phoenix, G.K. ; Hicks, W.K. ; Cinderby, S. ; Kuylenstierna, J.C.I. ; Stock, W.D. ; Dentener, F.J. ; Giller, K.E. ; Austin, A.T. ; Lefroy, R.D.B. ; Gimeno, B.S. ; Ashmore, M.R. ; Ineson, P. - \ 2006
Global Change Biology 12 (2006)3. - ISSN 1354-1013 - p. 470 - 476.
terrestrial ecosystems - species richness - chalk-grassland - consequences - ecoregions - pollutants - population - vegetation - scenarios - ammonia
Increased atmospheric nitrogen (N) deposition is known to reduce plant diversity in natural and semi-natural ecosystems, yet our understanding of these impacts comes almost entirely from studies in northern Europe and North America. Currently, we lack an understanding of the threat of N deposition to biodiversity at the global scale. In particular, rates of N deposition within the newly defined 34 world biodiversity hotspots, to which 50% of the world's floristic diversity is restricted, has not been quantified previously. Using output from global chemistry transport models, here we provide the first estimates of recent (mid-1990s) and future (2050) rates and distributions of N deposition within biodiversity hotspots. Our analysis shows that the average deposition rate across these areas was 50% greater than the global terrestrial average in the mid-1990s and could more than double by 2050, with 33 of 34 hotspots receiving greater N deposition in 2050 compared with 1990. By this time, 17 hotspots could have between 10% and 100% of their area receiving greater than 15 kg N ha1 yr1, a rate exceeding critical loads set for many sensitive European ecosystems. Average deposition in four hotspots is predicted to be greater than 20 kg N ha1 yr1. This elevated N deposition within areas of high plant diversity and endemism may exacerbate significantly the global threat of N deposition to world floristic diversity. Overall, we highlight the need for a greater global approach to assessing the impacts of N deposition
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.