Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 20 / 32

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin
    Maryani, N. ; Lombard, L. ; Poerba, Y.S. ; Subandiyah, S. ; Crous, P.W. ; Kema, G.H.J. - \ 2019
    Studies in Mycology 92 (2019). - ISSN 0166-0616 - p. 155 - 194.
    11 New taxa - Morphology - New species - Panama disease - Pathogenicity - Tropical Race 4

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt or Panama disease on banana, is one of the major constraints in banana production worldwide. Indonesia is the centre of origin for wild and cultivated bananas, which likely co-evolved with Foc. This study explored the widest possible genetic diversity of Foc by sampling across Indonesia at 34 geographically and environmentally different locations in 15 provinces at six islands. This resulted in a comprehensive collection of ∼200 isolates from 40 different local banana varieties. Isolates were identified and assessed using sequence analysis of the translation elongation factor-1alpha (tef1), the RNA polymerase II largest subunit (rpb1), and the RNA polymerase II second largest subunit (rpb2). Phylogenetic analyses of these genes allowed the identification of 180 isolates of Fusarium oxysporum f. sp. cubense (Foc), and 20 isolates of the Fusarium fujikuroi species complex (FFSC), the Fusarium incarnatum-equiseti species complex (FIESC), and the Fusarium sambucinum species complex (FSSC). Further analyses, incorporating a worldwide collection of Foc strains, revealed nine independent genetic lineages for Foc, and one novel clade in the Fusarium oxysporum species complex (FOSC). Selected isolates from each lineage were tested on the banana varieties Gros Michel and Cavendish to characterise their pathogenicity profiles. More than 65 % of the isolates were diagnosed as Tropical Race 4 (Foc-TR4) due to their pathogenicity to Cavendish banana, which supports the hypothesis that Foc-TR4 is of Indonesian origin. Nine independent genetic lineages for Foc are formally described in this study. This biodiversity has not been studied since the initial description of Foc in 1919. This study provides a detailed overview of the complexity of Fusarium wilt on banana and its diversity and distribution across Indonesia.

    Genera of phytopathogenic fungi : GOPHY 2
    Marin-Felix, Y. ; Hernández-Restrepo, Margarita ; Wingfield, M.J. ; Akulov, A. ; Carnegie, A.J. ; Cheewangkoon, R. ; Gramaje, D. ; Groenewald, J.Z. ; Guarnaccia, V. ; Halleen, F. ; Lombard, L. ; Luangsa-ard, J. ; Marincowitz, S. ; Moslemi, A. ; Mostert, L. ; Quaedvlieg, W. ; Schumacher, R.K. ; Spies, C.F.J. ; Thangavel, R. ; Taylor, P.W.J. ; Wilson, A.M. ; Wingfield, B.D. ; Wood, A.R. ; Crous, P.W. - \ 2019
    Studies in Mycology 92 (2019). - ISSN 0166-0616 - p. 47 - 133.
    26 new taxa - DNA barcodes - Fungal systematics - Six new typifications

    This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.

    Generic hyper-diversity in Stachybotriaceae
    Lombard, L. ; Houbraken, J. ; Decock, C. ; Samson, R.A. ; Meijer, M. ; Réblová, M. ; Groenewald, Johannes Z. ; Crous, P.W. - \ 2016
    Persoonia 36 (2016)JUNE. - ISSN 0031-5850 - p. 156 - 246.
    Biodegraders - Generic concept - Human and plant pathogens - Indoor mycobiota - Multi-gene phylogeny - Species concept - Taxonomy

    The family Stachybotriaceae was recently introduced to include the genera Myrothecium, Peethambara and Stachybotrys. Members of this family include important plant and human pathogens, as well as several species used in industrial and commercial applications as biodegraders and biocontrol agents. However, the generic boundaries in Stachybotriaceae are still poorly defined, as type material and sequence data are not readily available for taxonomic studies. To address this issue, we performed multi-locus phylogenetic analyses using partial gene sequences of the 28S large subunit (LSU), the internal transcribed spacer regions and intervening 5.8S nrRNA (ITS), the RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) for all available type and authentic strains. Supported by morphological characters these data resolved 33 genera in the Stachybotriaceae. These included the nine already established genera Albosynnema, Alfaria, Didymostilbe, Myrothecium, Parasarcopodium, Peethambara, Septomyrothecium, Stachybotrys and Xepicula. At the same time the generic names Melanopsamma, Memnoniella and Virgatospora were resurrected. Phylogenetic inference further showed that both the genera Myrothecium and Stachybotrys are polyphyletic resulting in the introduction of 13 new genera with myrothecium-like morphology and eight new genera with stachybotrys-like morphology.

    Caulicolous Botryosphaeriales from Thailand
    Trakunyingcharoen, T. ; Lombard, L. ; Groenewald, J.Z. ; Cheewangkoon, R. ; To-Anun, C. ; Crous, P.W. - \ 2015
    Persoonia 34 (2015). - ISSN 0031-5850 - p. 87 - 99.
    Aplosporella - Botryosphaeriaceae - Diplodia - Lasiodiplodia - Multigene phylogeny - Pseudofusicoccum - Sexual morph - Systematics

    Members of Botryosphaeriales are commonly encountered as endophytes or pathogens of various plant hosts. The Botryosphaeriaceae represents the predominant family within this order, containing numerous species associated with canker and dieback disease on a wide range of woody hosts. During the course of routine surveys from various plant hosts in Thailand, numerous isolates of Botryosphaeriaceae, including Aplosporellaceae were collected. Isolates were subsequently identified based on a combination of morphological characteristics and phylogenetic analysis of a combined dataset of the ITS and EF1-α gene regions. The resulting phylogenetic tree revealed 11 well-supported clades, correlating with different members of Botryosphaeriales. Other than confirming the presence of taxa such as Lasiodiplodia theobromae, L. pseudotheobromae and Neofusicoccum parvum, new records for Thailand include Pseudofusicoccum adansoniae and P. ardesiacum. Furthermore, four novel species are described, namely Diplodia neojuniperi from Juniperus chinensis, Lasiodiplodia thailandica from Mangifera indica, Pseudofusicoccum artocarpi and Aplosporella artocarpi from Artocarpus heterophyllus, while a sexual morph is also newly reported for L. gonubiensis. Further research is presently underway to determine the pathogenicity and relative importance of these species on different woody hosts in Thailand.

    Lineages in Nectriaceae: Generic status of Fusarium
    Lombard, L. ; Merwe, N. van der; Groenewald, E. ; Crous, P.W. - \ 2015
    Gewasbescherming 46 (2015)1. - ISSN 0166-6495 - p. 18 - 18.
    Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera
    Lombard, L. ; Merwe, N.A. Van Der; Groenewald, J.Z. ; Crous, P.W. - \ 2014
    Phytopathologia Mediterranea 53 (2014)3. - ISSN 0031-9465 - p. 515 - 532.
    black foot disease - cylindrocarpon-destructans - phylogenetic-relationships - multigene analysis - sp nov. - neonectria - rot - hypocreales - radicicola - grapevines
    Genera with cylindrocarpon-like asexual morphs are important pathogens of various herbaceous and woody plant hosts globally. Recent multi-gene studies of this generic complex indicated that the genus Ilyonectria is paraphyletic. The present study was therefore initiated to re-evaluate the generic status of Ilyonectria and at the same time address some taxonomic irregularities in the genera Cylindrodendrum and Neonectria. Using multi-gene DNA data and morphological comparisons, the genus Dactylonectria is introduced with 10 new combinations, several of which were previously treated in Ilyonectria. Two new species, D. hordeicola and D. pinicola, are also described. Furthermore, one new combination is provided in the genus Cylindrodendrum, and three new combinations in the genus Neonectria, for species previously treated in the genera Acremonium, Cylindrocarpon, Nectria and Neonectria. The aquatic genus Heliscus is reduced to synonymy under Neonectria.
    Diaporthe species associated with Vaccinium, with specific reference to Europe
    Lombard, L. ; Leeuwen, G.C.M. van; Guarnaccia, V. ; Polizzi, G. ; Rijswick, P.C.J. van; Rosendahl, K.C.H.M. ; Gabler, J. ; Crous, P.W. - \ 2014
    Phytopathologia Mediterranea 53 (2014)2. - ISSN 0031-9465 - p. 287 - 299.
    phomopsis-vaccinii - maximum-likelihood - south-africa - stem canker - blueberry - grapevines - cranberry - australafricana - inference - diseases
    Species of the genus Vaccinium are commercially cultivated in Europe for their berries, which are highly valued for dietary and pharmaceutical properties. Cultivation is severely limited due to a range of fungal diseases, especially those caused by species of Diaporthe. A number of Diaporthe isolates have been collected from Vaccinium growing regions in Europe, and initially identified as D. vaccinii based on host association. Using DNA sequence inference of the combined ß-tubulin, calmodulin, translation elongation factor 1-alpha and the internal transcribed spacer region of the nuclear rDNA, along with morphological characteristics, six species were characterised. Diaporthe eres, D. vaccinii and D. viticola are known species and three novel taxa are described here as D. asheicola, D. baccae and D. sterilis. This study is the first confirmed report of D. vaccinii in Latvia and the Netherlands.
    Botryosphaeriaceae associated with diseases of mango (Mangifera indica)
    Trakunyingcharoen, T. ; Cheewangkoon, R. ; To-anun, C. ; Crous, P.W. ; Niekerk, J.M. van; Lombard, L. - \ 2014
    Australasian Plant Pathology 43 (2014)4. - ISSN 0815-3191 - p. 425 - 438.
    1st report - south-africa - neofusicoccum-mediterraneum - phylogenetic inference - gene genealogies - fruit rot - lasiodiplodia - dieback - trees - morphology
    Fungal species of Botryosphaeriaceae have a cosmopolitan distribution and are important pathogens of a wide range of plant hosts. This study aims to use phylogenetic inference to review the geographical distribution of botryosphaeriacous species that have been associated with diseases of mango (Mangifera indica) globally. The phylogenetic analyses were performed based on the combined sequence datasets of the internal transcribed spacer (ITS) region of the nuclear rDNA and a partial region of the translation elongation factor 1-alpha (EF1-a) gene. The phylogenetic study revealed seven clades with distinct morphological characters from several countries, including Australia, Brazil, Egypt, Iran, Mali, Peru, South Africa, Taiwan and Thailand. Lasiodiplodia theobromae appears to be a dominant species on mango with the largest geographical distribution, whereas L. crassispora and Barriopsis iraniana have only been reported on mango in Brazil and Iran, respectively. These finding indicate that most of the species reported from mango are not restricted to specific geographical regions, although some genera appear to have a limited distribution.
    Phylogeny and taxonomy of the genus Gliocephalotrichum
    Lombard, L. ; Serrato-Diaz, L.M. ; Cheewangkoon, R. ; French-Monar, R.D. ; Decock, C. ; Crous, P.W. - \ 2014
    Persoonia 32 (2014). - ISSN 0031-5850 - p. 127 - 140.
    nectriaceae hypocreales - 1st report - fruit rot - bionectriaceae - bulbilium - anamorph - rambutan - fungi
    Species in the genus Gliocephalotrichum (= Leuconectria) (Hypocreales, Nectriaceae) are soilborne fungi, associated with post-harvest fruit spoilage of several important tropical fruit crops. Contemporary taxonomic studies of these fungi have relied on morphology and DNA sequence comparisons of the internal transcribed spacer region of the nuclear rDNA (ITS) and the ß-tubulin gene regions. Employing DNA sequence data from four loci (ß-tubulin, histone H3, ITS, and translation elongation factor 1-alpha) and morphological comparisons, the taxonomic status of the genus Gliocephalotrichum was re-evaluated. As a result five species are newly described, namely G. humicola (Taiwan, soil), G. mexicanum (rambutan fruit from Mexico), G. nephelii (rambutan fruit from Guatemala), G. queenslandicum (Australia, endophytic isolations) and G. simmonsii (rambutan fruit from Guatemala). Although species of Gliocephalotrichum are generally not regarded as important plant pathogens, their ability to cause post-harvest fruit rot could have an impact on fruit export and storage.
    Fungal Planet description sheets: 214–280
    Crous, P.W. ; Shivas, R.G. ; Quaedvlieg, W. ; Bank, M. van der; Zhang, Y. ; Summerell, B.A. ; Guarro, J. ; Wingfield, M.J. ; Wood, A.R. ; Alfenas, A.C. ; Braun, U. ; Cano-Lira, J.F. ; Garcia, D. ; Marin-Felix, Y. ; Alvarado, P. ; Andrade, J.P. ; Armengol, J. ; Assefa, A. ; Breeÿen, A. den; Camele, I. ; Cheewangkoon, R. ; Souza, J.T. De; Duong, T.A. ; Esteve-Raventós, F. ; Fournier, J. ; Frisullo, S. ; García-Jiménez, J. ; Gardiennet, A. ; Gené, J. ; Hernández-Restrepo, M. ; Hirooka, Y. ; Hospenthal, D.R. ; King, A. ; Lechat, C. ; Lombard, L. ; Mang, S.M. ; Marbach, P.A.S. ; Marincowitz, S. ; Montaño-Mata, N.J. ; Moreno, G. ; Perez, C.A. ; Pérez Sierra, A.M. ; Robertson, J.L. ; Roux, J. ; Rubio, E. ; Schumacher, R.K. ; Stchigel, A.M. ; Sutton, D.A. ; Tan, Y.P. ; Thompson, E.H. ; Vanderlinde, E. ; Walker, A.K. ; Walker, D.M. ; Wickes, B.L. ; Wong, P.T.W. ; Groenewald, J.Z. - \ 2014
    Persoonia 32 (2014). - ISSN 0031-5850 - p. 184 - 306.
    sp-nov - phylogeny reveals - eucalyptus-microfungi - host-associations - gene phylogeny - sequence data - diaporthales - morphology - gnomoniaceae - conioscypha
    Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Marasmius vladimirii from leaf litter (India), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
    Calonectria diseases on ornamental plants in Europe and the Mediterranean Basion: an overview
    Vitale, A. ; Crous, P.W. ; Lombard, L. ; Polizzi, G. - \ 2013
    Journal of Plant Pathology: rivista di patologia vegetale 95 (2013)3. - ISSN 1125-4653 - p. 463 - 476.
    cylindrocladium-crotalariae microsclerotia - forest tree nurseries - 1st report - root-rot - leaf-spot - crown rot - feijoa-sellowiana - soil-temperature - mastic tree - damping-off
    Species of Calonectria and their cylindrocladium-like asexual morphs are important plant pathogens of agronomic and forestry crops, especially in the tropical and subtropical regions of the world. Calonectria species have been associated with a wide range of disease symptoms on a large number of plant hosts. On horticultural crops, most records of Calonectria species come from the Northern Hemisphere, where they occur mainly in gardens and ornamental nurseries. In Europe and the Mediterranean basin, several species are widespread in nurseries and cause extensive damage to ornamental plants. In the past, identification of species was based on phenotypic characters and sexual compatibility using standardised media. More recently, morphological characteristics, phylogenetic studies (DNA sequence data of the ß-tubulin, histone H3 and translation elongation factor-1a gene regions) and mating studies have revealed the presence of several cryptic species complexes that were formerly treated as single Calonectria species. These studies resulted in the introduction of several new species. Other studies aimed at understanding environmental sustainability focused attention on soil solarisation and biological control as means for controlling these pathogens. The potential use of biological control agents (BCAs) and chemicals for controlling Calonectria-induced diseases has recently been addressed. In this review we discuss the Calonectria species detected in Europe and the Mediterranean basin, and the disease management strategies. In view of the mandatory implementation of integrated pest management (IPM) for all European countries by 2014, this paper provides basic information as a platform for the adaptation of more sustainable integrated measures to control Calonectria diseases in European nurseries.
    A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales)
    Wikee, S. ; Lombard, L. ; Nakashima, C. ; Motohashi, K. ; Chukeatirote, E. ; Cheewangkoon, R. ; McKenzie, E.H.C. ; Hyde, K.D. ; Crous, P.W. - \ 2013
    Studies in Mycology 76 (2013)1. - ISSN 0166-0616 - p. 1 - 29.
    citrus black spot - ribosomal dna - south-africa - fungus - banana - identification - eucalyptus - anamorph - vaccinii - nuclear
    Phyllosticta is a geographically widespread genus of plant pathogenic fungi with a diverse host range. This study redefines Phyllosticta, and shows that it clusters sister to the Botryosphaeriaceae (Botryosphaeriales, Dothideomycetes), for which the older family name Phyllostictaceae is resurrected. In moving to a unit nomenclature for fungi, the generic name Phyllosticta was chosen over Guignardia in previous studies, an approach that we support here. We use a multigene DNA dataset of the ITS, LSU, ACT, TEF and GPDH gene regions to investigate 129 isolates of Phyllosticta, representing about 170 species names, many of which are shown to be synonyms of the ubiquitous endophyte P. capitalensis. Based on the data generated here, 12 new species are introduced, while epitype and neotype specimens are designated for a further seven species. One species of interest is P. citrimaxima associated with tan spot of Citrus maxima fruit in Thailand, which adds a fifth species to the citrus black spot complex. Previous morphological studies lumped many taxa under single names that represent complexes. In spite of this Phyllosticta is a species-rich genus, and many of these taxa need to be recollected in order to resolve their phylogeny and taxonomy.
    Characterisation of Neofusicoccum species causing mango dieback in Italy
    Ismail, A.M. ; Cirvilleri, G. ; Lombard, L. ; Crous, P.W. ; Groenewald, J.Z. ; Polizzi, G. - \ 2013
    Journal of Plant Pathology: rivista di patologia vegetale 95 (2013)3. - ISSN 1125-4653 - p. 549 - 557.
    mangifera-indica - phylogenetic analysis - south-africa - 1st report - sp-nov - botryosphaeria - pathogenicity - lasiodiplodia - morphology - grapevine
    Species of Botryosphaeriaceae are important fungal pathogens of mango worldwide. A survey of 11 mango orchards located in the provinces of Catania, Messina, Palermo and Ragusa (Sicily, southern Italy), resulted in the isolation of a large number (76) of Neofusicoccum isolates associated with decline and dieback symptoms. Isolates were identified based on morphology and DNA sequence data analyses of the internal transcribed spacer region of the nrDNA and partial translation of the elongation factor 1-alpha gene regions. Two species of Neofusicoccum were identified, which included N. parvum and N. australe, the former of which was the dominant species. The high incidence in local orchards and the pathogenicity results indicate that N. parvum and N. australe are important pathogens of mango in Sicily where they may significantly limit mango production.
    Phyllosticta capitalensis, a widespread endophyte of plants
    Wikee, S. ; Lombard, L. ; Crous, P.W. ; Nakashima, C. ; Motohashi, K. ; Chukeatirote, E. ; Alias, S.A. ; McKenzie, E.H.C. ; Hyde, K.D. - \ 2013
    Fungal Diversity 60 (2013)1. - ISSN 1560-2745 - p. 91 - 105.
    citrus black spot - guignardia-citricarpa - fungal endophytes - natural-products - latent pathogens - musa-acuminata - woody-plants - diversity - thailand - banana
    Phyllosticta capitalensis is an endophyte and weak plant pathogen with a worldwide distribution presently known from 70 plant families. This study isolated P. capitalensis from different host plants in northern Thailand, and determined their different life modes. Thirty strains of P. capitalensis were isolated as endophytes from 20 hosts. An additional 30 strains of P. capitalensis from other hosts and geographic locations were also obtained from established culture collections. Phylogenetic analysis using ITS, ACT and TEF gene data confirmed the identity of all isolates. Pathogenicity tests with five strains of P. capitalensis originating from different hosts were completed on their respective host plants. In all cases there was no infection of healthy leaves, indicating that this endophyte does not cause disease on healthy, unstressed host plants. That P. capitalensis is often isolated as an endophyte has important implications in fungal biology and plant health. Due to its endophytic nature, P. capitalensis is commonly found associated with lesions of plants, and often incorrectly identified as a species of quarantine importance, which again has implications for trade in agricultural and forestry production.
    Editorial: Leaf Blight of Buxus sempervirens in Northern Forests of Iran Caused by Calonectria pseudonaviculata
    Mirabolfathy, M. ; Ahangaran, Y. ; Lombard, L. ; Crous, P.W. - \ 2013
    Plant Disease 97 (2013)8. - ISSN 0191-2917 - p. 1121 - 1121.
    Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection
    Rossman, A.Y. ; Seifert, K.A. ; Samuels, G.J. ; Minnis, A.M. ; Schroers, H.J. ; Lombard, L. ; Crous, P.W. ; Põldmaa, K. ; Cannon, P.F. ; Summerbell, R.C. ; Geiser, D.M. ; Zhuang, W. ; Hirooka, Y. ; Herrera, C. ; Salgado-Salazar, C. ; Chaverri, P. - \ 2013
    IMA fungus 4 (2013)1. - ISSN 2210-6340 - p. 41 - 51.
    With the recent changes concerning pleomorphic fungi in the new International Code of Nomenclature for algae, fungi, and plants (ICN), it is necessary to propose the acceptance or protection of sexual morph-typified or asexual morph-typified generic names that do not have priority, or to propose the rejection or suppression of competing names. In addition, sexual morph-typified generic names, where widely used, must be proposed for rejection or suppression in favour of asexual morph-typified names that have priority, or the latter must be proposed for conservation or protection. Some pragmatic criteria used for deciding the acceptance or rejection of generic names include: the number of name changes required when one generic name is used over another, the clarity of the generic concept, their relative frequencies of use in the scientific literature, and a vote of interested mycologists. Here, twelve widely used generic names in three families of Hypocreales are proposed for acceptance, either by conservation or protection, despite their lack of priority of publication, or because they are widely used asexual morph-typified names. Each pair of generic names is evaluated, with a recommendation as to the generic name to be used, and safeguarded, either through conservation or protection. Four generic names typified by a species with a sexual morph as type that are younger than competing generic names typified by a species with an asexual morph type, are proposed for use. Eight older generic names typified by species with an asexual morph as type are proposed for use over younger competing generic names typified by a species with a sexual morph as type. Within Bionectriaceae, Clonostachys is recommended over Bionectria; in Hypocreaceae, Hypomyces is recommended over Cladobotryum, Sphaerostilbella over Gliocladium, and Trichoderma over Hypocrea; and in Nectriaceae, Actinostilbe is recommended over Lanatonectria, Cylindrocladiella over Nectricladiella, Fusarium over Gibberella, Gliocephalotrichum over Leuconectria, Gliocladiopsis over Glionectria, Nalanthamala over Rubrinectria, Nectria over Tubercularia, and Neonectria over Cylindrocarpon.
    Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi
    Gomes, R.R. ; Glienke, C. ; Videira, S.I.R. ; Lombard, L. ; Groenewald, J.Z. ; Crous, P.W. - \ 2013
    Persoonia 31 (2013). - ISSN 0031-5850 - p. 1 - 41.
    internal transcribed spacer - south-africa - species concepts - sp-nov - coelomycete phomopsis - foeniculum-vulgare - multigene analysis - north-america - ribosomal dna - twig dieback
    Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diverse hosts, either as pathogens, saprobes, or as harmless endophytes. In the present study we investigated 243 isolates using multilocus DNA sequence data. Analyses of the rDNA internal transcribed spacer (ITS1, 5.8S, ITS2) region, and partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS) and calmodulin (CAL) genes resolved 95 clades. Fifteen new species are described, namely Diaporthe arengae, D. brasiliensis, D. endophytica, D. hongkongensis, D. inconspicua, D. infecunda, D. mayteni, D. neoarctii, D. oxe, D. paranensis, D. pseudomangiferae, D. pseudophoenicicola, D. raonikayaporum, D. schini and D. terebinthifolii. A further 14 new combinations are introduced in Diaporthe, and D. anacardii is epitypified. Although species of Diaporthe have in the past chiefly been distinguished based on host association, results of this study confirm several taxa to have wide host ranges, suggesting that they move freely among hosts, frequently co-colonising diseased or dead tissue. In contrast, some plant pathogenic and endophytic taxa appear to be strictly host specific. Given this diverse ecological behaviour among members of Diaporthe, future species descriptions lacking molecular data (at least ITS and HIS or TUB) should be strongly discouraged.
    Ilyonectria black foot rot associated with Proteaceae
    Lombard, L. ; Bezuidenhout, C.M. ; Crous, P.W. - \ 2013
    Australasian Plant Pathology 42 (2013)3. - ISSN 0815-3191 - p. 337 - 349.
    cylindrocarpon-destructans - phylogenetic analysis - multigene analysis - fusarium - disease - grapevine - radicicola - pathogens - cultivars - africa
    Proteaceae is an important component of the South African cut flower industry. Propagation of these woody plants using vegetative cuttings is, however, hampered by fungal infections initiated in the nursery. Recently black foot rot disease symptoms were observed on vegetative cuttings of Protea and Leucospermum in a fynbos nursery near Stanford, Western Cape Province, South Africa. Isolations from symptomatic plant material revealed several isolates of Ilyonectria, which were identified as I. macrodidyma, I. torresensis and four novel taxa described here as I. capensis, I. leucospermi, I. protearum and I. vredehoekensis. Species were characterised based on DNA phylogenetic inference and morphological comparisons. Furthermore, pathogenicity tests were conducted, which confirmed all six Ilyonectria species capable of causing black foot rot of Proteaceae. Other than the novel plant pathogenic species described here, this study also represents the first report of black foot rot disease associated with the cultivation of Proteaceae cut flowers.
    Fungal Planet description sheets: 128–153
    Crous, P.W. ; Shivas, R.G. ; Wingfield, M.J. ; Summerell, B.A. ; Rossman, A.Y. ; Alves, J.L. ; Adams, G.C. ; Barreto, R.W. ; Bell, A. ; Coutinho, M.L. ; Flory, S.L. ; Gates, G.K.R. ; Hardy, G.E.St.J. ; Kleczewski, N.M. ; Lombard, L. ; Longa, C.M.O. ; Louis-Seize, G. ; Macedo, F. ; Mahoney, D.P. ; Maresi, G. ; Martin-Sanchez, P.M. ; Marvanova, L. ; Minnis, A.M. ; Morgado, L.N. ; Noordeloos, M.E. ; Phillips, A.J.L. ; Quaedvlieg, W. ; Ryan, P.G. ; Saiz-Jimenez, C. ; Seifert, K.A. ; Swart, W.J. ; Tan, Y.P. ; Tanney, J.B. ; Thu, P.Q. ; Videira, S.I.R. ; Walker, D.M. ; Groenewald, J.Z. - \ 2012
    Persoonia 29 (2012). - ISSN 0031-5850 - p. 146 - 201.
    grass microstegium-vimineum - leaf-blight disease - sooty blotch - bipolaris sp - phylogeny - mycosphaerella - genus - cochliobolus - microfungi - eucalyptus
    Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliaefistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided.
    Homortomyces gen. nov., a new dothidealean pycnidial fungus from the Cradle of Humankind
    Crous, P.W. ; Groenewald, J.Z. ; Lombard, L. ; Wingfield, M.J. - \ 2012
    IMA fungus 3 (2012)2. - ISSN 2210-6340 - p. 109 - 115.
    Homortomyces is introduced as a new coelomycetous genus associated with leaf spots on Combretum erythrophyllum trees growing near and around the Sterkfontein caves, Maropeng, South Africa. Based on its transversely septate, brown conidia, the presence of paraphyses, and percurrent proliferation of the conidiogenous cells, the genus resembles Stilbospora (Melanoconidaceae, Diaporthales). It is distinct in having pycnidial condiomata, conidia lacking mucoid sheaths, and becoming muriform when mature. Its morphology and phylogenetic placement based on analyses of sequence data for the large subunit nuclear ribosomal RNA gene (LSU, 28S) as well as the ITS and 5.8S rRNA gene of the nrDNA operon, show that Homortomyces represents a novel genus in Dothideomycetes, although its familial relationships remain unresolved.
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.