Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 5 / 5

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Report on Economic Models Calibrated to Case-Study Landscapes
    Brady, M. ; Sahlin, Ullrika ; Clough, Y. ; Bailey, A. ; Cong, R.G. ; Elek, Zoltan ; Hedlund, K. ; Koellner, T. ; Marini, L. ; Olsson, O. ; Poppenborg, Patrick ; Redlich, Sarah ; Switek, Stanislaw ; Takacs, Viki ; Gils, S.H. van; Smith, H.G. - \ 2016
    FP7 Project Liberation
    Intensive agriculture reduces soil biodiversity across Europe
    Tsiafouli, M.A. ; Thébault, E. ; Sgardelis, S. ; Ruiter, P.C. de; Putten, W.H. van der; Birkhofer, K. ; Hemerik, L. ; Vries, F.T. de; Bardgett, R.D. ; Brady, M. ; Bjornlund, L. ; Bracht Jörgensen, H. ; Christensen, S. ; Herfelt, T. D'; Hotes, S. ; Hol, W.H.G. ; Frouz, J. ; Liiri, M. ; Mortimer, S.R. ; Setälä, H. ; Stary, J. ; Tzanopoulos, J. ; Uteseny, C. ; Wolters, V. ; Hedlund, K. - \ 2015
    Global Change Biology 21 (2015)2. - ISSN 1354-1013 - p. 973 - 985.
    food-web structure - land-use intensity - taxonomic distinctness - community structure - phylogenetic diversity - arthropod communities - temporal variability - 7-year period - ecosystem - management
    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.
    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation
    Achard, F. ; Boschetti, L. ; Brown, S. ; Brady, M. ; DeFries, R. ; Grassi, G. ; Herold, M. ; Mollicone, D. ; Mora, B. ; Pandey, D. ; Souza, C. - \ 2014
    Wageningen : GOFC-GOLD (GOFC-GOLD Report COP20-1) - 255
    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation
    Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services
    Setälä, H. ; Bardgett, R.D. ; Birkhofer, K. ; Brady, M. ; Byrne, L. ; Ruiter, P.C. de; Vries, F.T. de; Gardi, C. ; Hedlund, K. ; Hemerik, A. ; Hotes, S. ; Liiri, M. ; Mortimer, S.R. ; Pavao-Zuckerman, M. ; Pouyat, R. ; Tsiafouli, M. ; Putten, W.H. van der - \ 2014
    Urban Ecosystems 17 (2014)1. - ISSN 1083-8155 - p. 239 - 253.
    biological-control - land-use - functional composition - united-states - landscapes - conservation - impact - carbon - infrastructure - sustainability
    On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
    GOFC-GOLD REDD Sourcebook, COP-18 release - A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation
    Achard, F. ; Brown, S. ; Brady, M. ; DeFries, R. ; Grassi, G. ; Herold, M. ; Mollicone, D. ; Mora, B. ; Pandey, D. ; Souza, C. - \ 2012
    Wageningen : GOFC-GOLD (GOFC-GOLD Report COP18-1) - 219 p.
    A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.