Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1131564
Check title to add to marked list
Role of phosphate in the central metabolism of two lactic acid bacteria-a comparative systems biology approach
Levering, J. ; Musters, M.W.J.M. ; Bekker, M. ; Bellomo, D. ; Fiedler, T. ; Vos, W.M. de; Hugenholtz, F. ; Kreikemeyer, B. ; Kummer, U. ; Teusink, B. - \ 2012
FEBS Journal 279 (2012)7. - ISSN 1742-464X - p. 1274 - 1290.
pyruvate formate-lyase - group-a streptococci - lactococcus-lactis - phosphotransferase system - lactate-dehydrogenase - comparative genomics - in-vivo - glyceraldehyde-3-phosphate dehydrogenase - enterococcus-faecalis - inducer expulsion
Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human pathogen. Glucose-pulse experiments and enzymatic measurements were performed to parameterize kinetic models of glycolysis. Significant improvements were made to existing kinetic models for L. lactis, which subsequently accelerated the development of the first kinetic model of S. pyogenes glycolysis. The models revealed an important role for extracellular phosphate in the regulation of central metabolism and the efficient use of glucose. Thus, phosphate, which is rarely taken into account as an independent species in models of central metabolism, should be considered more thoroughly in the analysis of metabolic systems in the future. Insufficient phosphate supply can lead to a strong inhibition of glycolysis at high glucose concentrations in both species, but this was more severe in S. pyogenes. S. pyogenes is more efficient at converting glucose to ATP, showing a higher tendency towards heterofermentative energy metabolism than L. lactis. Our comparative systems biology approach revealed that the glycolysis of L. lactis and S. pyogenes have similar characteristics, but are adapted to their individual natural habitats with respect to phosphate regulation
Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.