Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 7 / 7

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors
    Lucas-Barbosa, D. ; Sun, P. ; Hakman, A. ; Beek, T.A. van; Loon, J.J.A. van; Dicke, M. - \ 2016
    Functional Ecology 30 (2016)3. - ISSN 0269-8463 - p. 431 - 441.
    016-3903
    Plants evolved strategies to attract pollinators that are essential for reproduction. However, plant defence against herbivores may trade off with pollinator attraction. Here, we investigated the role of inducible plant secondary metabolites in such a trade-off. Our objective was to reveal the mechanisms underlying the effects of induced plant responses to pollination and herbivory. We assessed how responses of plants to pollination and insect herbivory affect the behaviour of flower visitors. Subsequently, we investigated how the production of volatile and non-volatile compounds changes after pollination and herbivory. Both herbivores and pollinators induced important phenotypic changes in flowers. Brassica nigra plants respond to pollination and herbivory with changes in the profile of volatiles and non-volatiles of their flowers. Our results show that butterflies use different cues when searching for an oviposition site or a nectar source. Pollination status influenced the behaviour of butterflies, but not that of syrphid flies. We discuss the results in the context of the trade-off between defence and reproduction in plants and suggest that systemic responses to herbivores can interfere with local responses to pollination. Therefore, these responses must be addressed in an integrated way because, in nature, plants are simultaneously exposed to herbivores and pollinators. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors - ResearchGate. Available from: http://www.researchgate.net/publication/280736086_Visual_and_odour_cues_plant_responses_to_pollination_and_herbivory_affect_the_behaviour_of_flower_visitors [accessed Oct 20, 2015].
    Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics
    Lins, J.C. ; Loon, J.J.A. van; Bueno, V.H.P. ; Lucas-Barbosa, D. ; Dicke, M. ; Lenteren, J.C. van - \ 2014
    BioControl 59 (2014)6. - ISSN 1386-6141 - p. 707 - 718.
    borer tuta-absoluta - carnivorous arthropods - heteroptera miridae - biological-control - infochemical use - spider-mites - tomato - herbivores - bug - caliginosus
    Knowledge about the orientation mechanisms used by two important predaceous mirids (Macrolophus pygmaeus Rambour and Nesidiocoris tenuis (Reuter)) in finding their prey (whitefly Bemisia tabaci (Gennadius) and the tomato borer Tuta absoluta (Meyrick)) is limited. In a Y-tube olfactometer, we tested the behavioral responses of naïve and experienced predators to uninfested plants, herbivore-induced plant volatiles (HIPVs) from plants infested with T. absoluta and/or B. tabaci, the sex pheromone of T. absoluta, and volatiles produced by plants injured by the predators. Nesidiocoris tenuis responds to volatiles produced by uninfested plants only after experience with the plant, whereas naïve and experienced M. pygmaeus show positive chemotaxis. Both predators are attracted to volatiles from prey-infested plants, and we provide the first evidence that experience affects this response in M. pygmaeus. Infestation of the same plant by both prey species elicited similar responses by the two predators as plants infested by either herbivore singly. Neither predator responded to sex pheromones of T. absoluta. Macrolophus pygmaeus avoided plants injured by conspecifics, while N. tenuis females were attracted by such plants. The implications of these results for augmentative biological control are discussed.
    Caught between parasitoids and predators - survival of a specialist herbivore on leaves and flowers of mustard plants
    Lucas-Barbosa, D. ; Poelman, E.H. ; Aartsma, Y.S.Y. ; Snoeren, T.A.L. ; Loon, J.J.A. van; Dicke, M. - \ 2014
    Journal of Chemical Ecology 40 (2014)6. - ISSN 0098-0331 - p. 621 - 631.
    enemy-free space - foraging behavior - food quality - ecological perspective - phytophagous insects - pieris-brassicae - natural enemies - high-mortality - floral scent - slow-growth
    The survival of insect herbivores typically is constrained by food choice and predation risk. Here, we explored whether movement from leaves to flowers increases survival of herbivores that prefer to feed on floral tissues. Combining field and greenhouse experiments, we investigated whether flowering influences the behavior of Pieris brassicae butterflies and caterpillars and, consequently, herbivore survival in the field. In this context, we investigated also if flowers of Brassica nigra can provide caterpillars refuge from the specialist parasitoid Cotesia glomerata and from predatory social wasps. By moving to flowers, caterpillars escaped from the parasitoid. Flowers are nutritionally superior when compared with leaves, and caterpillars develop faster when feeding on flowers. However, late-stage caterpillars can be preyed upon intensively by social wasps, irrespective of whether they feed on leaves or flowers. We conclude that flower preference by P. brassicae is more likely driven by nutritional advantages and reduced parasitism on flowers, than by risks of being killed by generalist predators.
    Folivory Affects Composition of Nectar, Floral Odor and Modifies Pollinator Behavior
    Bruinsma, M. ; Lucas-Barbosa, D. ; Broeke, C.J.M. ten; Dam, N.M. van; Beek, T.A. van; Dicke, M. ; Loon, J.J.A. van - \ 2014
    Journal of Chemical Ecology 40 (2014)1. - ISSN 0098-0331 - p. 39 - 49.
    nicotiana-attenuata - optimal defense - wild radish - electroantennogram responses - raphanus-raphanistrum - pieris-brassicae - plant volatiles - leaf herbivory - damage - visitation
    Herbivory induces changes in plants that influence the associated insect community. The present study addresses the potential trade-off between plant phytochemical responses to insect herbivory and interactions with pollinators. We used a multidisciplinary approach and have combined field and greenhouse experiments to investigate effects of herbivory in plant volatile emission, nectar production, and pollinator behavior, when Pieris brassicae caterpillars were allowed to feed only on the leaves of Brassica nigra plants. Interestingly, volatile emission by flowers changed upon feeding by herbivores on the leaves, whereas, remarkably, volatile emission by leaves did not significantly differ between infested and non-infested flowering plants. The frequency of flower visits by pollinators was generally not influenced by herbivory, but the duration of visits by honeybees and butterflies was negatively affected by herbivore damage to leaves. Shorter duration of pollinator visits could be beneficial for a plant, because it sustains pollen transfer between flowers while reducing nectar consumption per visit. Thus, no trade-off between herbivore-induced plant responses and pollination was evident. The effects of herbivore-induced plant responses on pollinator behavior underpin the importance of including ecological factors, such as herbivore infestation, in studies of the ecology of plant pollination.
    Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development
    Pashalidou, F.G. ; Lucas-Barbosa, D. ; Loon, J.J.A. van; Dicke, M. ; Fatouros, N.E. - \ 2013
    Ecology 94 (2013)3. - ISSN 0012-9658 - p. 702 - 713.
    insect herbivores - pieris-brassicae - specialist herbivores - arabidopsis-thaliana - mamestra-brassicae - defense responses - bunias orientalis - chemical defense - pinus-sylvestris - getting ready
    Herbivory induces direct resistance responses in plants that negatively affect subsequently colonizing herbivores. Moreover, eggs of herbivorous insects can also activate plant resistance, which in some cases prevents hatching larvae from feeding. Until now, plant-mediated effects of eggs on subsequent herbivory, and the specificity of such responses, have remained poorly understood. We studied the specificity and effects of plant resistance induced by herbivore egg deposition against lepidopteran larvae of species with different dietary breadths, feeding on a wild annual plant, the crucifer Brassica nigra. We examined whether this plant-mediated response affects the growth of caterpillars of a specialist (Pieris brassicae) that feeds on B. nigra leaves and flowers, and a generalist (Mamestra brassicae) that rarely attacks this wild crucifer. We measured growth rates of neonate larvae to the end of their second instar after the larvae had hatched on plants exposed to eggs vs. plants without eggs, under laboratory and semi-field conditions. Moreover, we studied the effects of egg deposition by the two herbivore species on plant height and flowering rate before and after larval hatching. Larvae of both herbivore species that developed on plants previously infested with eggs of the specialist butterfly P. brassicae gained less mass compared with larvae that developed on egg-free plants. Plants exposed to butterfly eggs showed accelerated plant growth and flowering compared to egg-free plants. Egg deposition by the generalist moth M. brassicae, in contrast, had no effect on subsequent performance by either herbivore species, or on plant development. Our results demonstrate that B. nigra plants respond differently to eggs of two herbivore species in terms of plant development and induced resistance to caterpillar attack. For this annual crucifer, the retardation of caterpillar growth in response to deposition of eggs by P. brassicae in combination with enhanced growth and flowering likely result in reproductive assurance, after being exposed to eggs from an herbivore whose larvae rapidly reduce the plant's reproductive potential through florivory.
    Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production
    Lucas-Barbosa, D. ; Loon, J.J.A. van; Gols, R. ; Beek, T.A. van; Dicke, M. - \ 2013
    Functional Ecology 27 (2013)1. - ISSN 0269-8463 - p. 245 - 254.
    pieris-brassicae - raphanus-raphanistrum - solanum-carolinense - volatile emissions - flower visitation - insect eggs - herbivory - pollinators - ecology - defense
    1.Plants respond to insect herbivores with changes in physical and chemical traits, both locally and systemically, in leaves and flowers. Such phenotypic changes may influence the behaviour of every community member that interacts with the plant. Here, we address effects of plant responses to eggs and subsequent herbivory by caterpillars on plant-mediated interactions with pollinators and consequences for plant fitness. 2.Using a common garden set-up, we have investigated responses of Brassica nigra plants to herbivore exposure from egg deposition onwards throughout larval development. We quantified effects of infestation by the specialist Pieris brassicae on: 1. behaviour of pollinators; 2. volatile emission and 3. timing and number of seeds produced. 3.Egg deposition and folivory did not influence visitation by pollinators to plots of infested or control plants. Effects of herbivore infestation on both pollinator visitation and volatile emission were observed only at a later stage, when caterpillars were feeding on the flowers. 4.Remarkably, before eggs had hatched, infested plants accelerated seed production. The caterpillars that developed from the eggs fed on flowers but not on seeds and thus seed production prior to herbivory on flowers safeguarded reproductive output. 5.The results of this study show that early plant investments in reproduction can successfully prevent consumption of expensive reproductive tissues. By accelerating seed production, plants prevented consumption of flowers and effectively defended themselves against the herbivores
    Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels
    Fatouros, N.E. ; Lucas-Barbosa, D. ; Weldegergis, B.T. ; Pashalidou, F.G. ; Loon, J.J.A. van; Dicke, M. ; Harvey, J.A. ; Gols, R. ; Huigens, M.E. - \ 2012
    PLoS ONE 7 (2012)8. - ISSN 1932-6203
    furcifera horvath homoptera - elm leaf beetle - whitebacked planthopper - cotesia-glomerata - herbaceous plants - pieris-brassicae - host location - rice plants - oviposition - defense
    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.