Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 8 / 8

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1153831
Check title to add to marked list
Assessing the effectiveness of sustainable land management policies for combating desertification : A data mining approach
Salvati, L. ; Kosmas, C. ; Kairis, O. ; Karavitis, C. ; Acikalin, S. ; Belgacem, A. ; Solé-Benet, A. ; Chaker, M. ; Fassouli, V. ; Gokceoglu, C. ; Gungor, H. ; Hessel, R. ; Khatteli, H. ; Kounalaki, A. ; Laouina, A. ; Ocakoglu, F. ; Ouessar, M. ; Ritsema, C. ; Sghaier, M. ; Sonmez, H. ; Taamallah, H. ; Tezcan, L. ; Vente, J. de; Kelly, C. ; Colantoni, A. ; Carlucci, M. - \ 2016
Journal of Environmental Management 183 (2016)3. - ISSN 0301-4797 - p. 754 - 762.
Human pressure - Indicators - Mediterranean region - Multivariate statistics - Response assemblage

This study investigates the relationship between fine resolution, local-scale biophysical and socioeconomic contexts within which land degradation occurs, and the human responses to it. The research draws on experimental data collected under different territorial and socioeconomic conditions at 586 field sites in five Mediterranean countries (Spain, Greece, Turkey, Tunisia and Morocco). We assess the level of desertification risk under various land management practices (terracing, grazing control, prevention of wildland fires, soil erosion control measures, soil water conservation measures, sustainable farming practices, land protection measures and financial subsidies) taken as possible responses to land degradation. A data mining approach, incorporating principal component analysis, non-parametric correlations, multiple regression and canonical analysis, was developed to identify the spatial relationship between land management conditions, the socioeconomic and environmental context (described using 40 biophysical and socioeconomic indicators) and desertification risk. Our analysis identified a number of distinct relationships between the level of desertification experienced and the underlying socioeconomic context, suggesting that the effectiveness of responses to land degradation is strictly dependent on the local biophysical and socioeconomic context. Assessing the latent relationship between land management practices and the biophysical/socioeconomic attributes characterizing areas exposed to different levels of desertification risk proved to be an indirect measure of the effectiveness of field actions contrasting land degradation.

Modeling the ecological niche of long-term land use changes : The role of biophysical factors
Bajocco, S. ; Ceccarelli, T. ; Smiraglia, D. ; Salvati, L. ; Ricotta, C. - \ 2016
Ecological Indicators 60 (2016). - ISSN 1470-160X - p. 231 - 236.
Biophysical factors - Ecological niche - Land abandonment - Land use/land cover change - Urbanization

Land use/land cover changes (LULCCs) represent the result of the complex interaction between biophysical factors and human activity, acting over a wide range of temporal and spatial scales. The aim of this work is to quantify the role of biophysical factors in constraining the trajectories of land abandonment and urbanization in the last 50 years. A habitat suitability model borrowed from animal ecology was used to analyze the ecological niche of the following LULCC trajectories occurred in Emilia-Romagna (northern Italy) during 1954-2008: (i) land abandonment (LA) and (ii) urbanization (URB), both from agricultural areas (URB-agr) and from semi-natural areas (URB-for). Results showed that the different LULCC trajectories were driven by different combinations of biophysical factors, such as climate, topography and soil quality. In particular, slope and elevation resulted as the main driving factors for rural processes, while slope and temperatures resulted as the main constraints underlying urban processes. This approach may represent a conceptual and technical step toward the systematic assessment of LULCC processes, thus providing an effective support tool to inform decision makers about land use transformations, their underlying causes, as well as their possible implications.

Linking trajectories of land change, land degradation processes and ecosystem services
Smiraglia, D. ; Ceccarelli, T. ; Bajocco, S. ; Salvati, L. ; Perini, L. - \ 2016
Environmental Research (2016). - ISSN 0013-9351 - p. 590 - 600.
Land abandonment - Land take - Soil degradation - Sustainable land management - SWOT analysis

Land Degradation (LD) is a complex phenomenon resulting in a progressive reduction in the capacity of providing ecosystem services (ES). Landscape transformations promoting an unsustainable use of land often reveal latent processes of LD. An evaluation carried out in respect to the different ecosystem services is nowadays regarded as the most appropriate approach for assessing the effects of LD. The aim of this study is to develop an evaluation framework for identifying the linkages between land changes, LD processes and ES and suggesting Sustainable Land Management (SLM) options suited to reverse (or mitigate) LD impact. A SWOT analysis was carried out with the aim to identify internal and external factors that are favorable (or unfavorable) to achieve the proposed SLM actions. The study areas are the Fortore valley and the Valpadana, in Italy. The main trajectory identified for the Fortore valley is related to land abandonment due to population aging and the progressive emigration started in the 1950s. The most relevant LD processes are soil erosion and geomorphological instability, affecting regulating services such as natural hazard and erosion control. SLM options should consider interventions to contrast geomorphological instability, the promotion of climate smart agriculture and of typical products, and an efficient water resources management. The main trajectories identified for Valpadana are related to urban expansion and farmland abandonment and, as a consequence, land take due to anthropogenic pressure and woodland expansion as the main LD process. The reduction of food production was identified as the most relevant provisioning service affected. SLM should envisage best practices finalized to water saving and soil consumption reduction: efficient irrigation solutions, climate smart agriculture and zero sealing practices. This study highlights the diagnostic value of the suggested approach where LD processes are elicited from land change trajectories determining specific impacts on ES and providing operational support for the implementation of SLM options.

Unraveling Landscape Complexity : Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954–2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy
Smiraglia, D. ; Ceccarelli, T. ; Bajocco, S. ; Perini, L. ; Salvati, L. - \ 2015
Environmental Management 56 (2015)4. - ISSN 0364-152X - p. 916 - 932.
Change trajectories - Land abandonment - Landscape metrics - Multivariate analysis - Urbanization

This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954–2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban–rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

Unveiling soil degradation and desertification risk in the Mediterranean basin: a data mining analysis of the relationships between biophysical and socioeconomic factors in agro-forest landscapes
Salvati, L. ; Kosmas, C. ; Kairis, O. ; Karavitis, C. ; Hessel, R. ; Ritsema, C.J. - \ 2015
Journal of Environmental Planning and Management 58 (2015)10. - ISSN 0964-0568 - p. 1789 - 1803.
land-use change - abandonment - erosion - vulnerability - performance - indicators - region - europe - system - spain
Soil degradation and desertification processes in the Mediterranean basin reflect the interplay between environmental and socioeconomic drivers. An approach to evaluate comparatively the multiple relationships between biophysical variables and socioeconomic factors is illustrated in the present study using the data collected from 586 field sites located in five Mediterranean areas (Spain, Greece, Turkey, Tunisia and Morocco). A total of 47 variables were chosen to illustrate land-use, farm characteristics, population pressure, tourism development, rainfall regime, water availability, soil properties and vegetation cover, among others. A data mining approach incorporating non-parametric inference, principal component analysis and hierarchical clustering was developed to identify candidate syndromes of soil degradation and desertification risk. While field sites in the same study area showed a substantial similarity, the multivariate relationship among variables diverged among study areas. Data mining techniques proved to be a practical tool to identify spatial determinants of soil degradation and desertification risk. Our findings identify the contrasting spatial patterns for biophysical and socioeconomic variables, in turn associated with different responses to land degradation.
A cost-effective approach for improving the quality of soil sealing change detection from Landsat imagery
Smiraglia, D. ; Rinaldo, S. ; Ceccarelli, T. ; Bajocco, S. ; Salvati, L. ; Ricotta, C. ; Perini, L. - \ 2014
European Journal of Remote Sensing 47 (2014). - ISSN 2279-7254 - p. 805 - 819.
urban - modis - tm - transformation - segmentation - phenology - sprawl - region - ndvi - area
The aim of this study is to develop a cost-effective approach for soil sealing change detection integrating radiometric analysis, multi-resolution segmentation and object-based classifiers in two study areas in Italy: Campania region and Veneto region. The integrated approach uses multi-temporal satellite images and CORINE Land Cover (CLC) maps. A good overall accuracy was obtained for the soil sealing maps produced. The results show an improvement in terms of size of the minimum mapping unit and of the changed object (1,44 ha in both cases) in respect to the CLC. The approach proves to be cost-effective given the data which are provided at low or no cost and as well as the level of automation achievable.
Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Types of Degradation, Causes, and Implications for Management
Kairis, O. ; Kosmas, C. ; Karavitis, C. ; Ritsema, C.J. ; Salvati, L. ; Acikalin, S. ; Alcala, M. ; Alfama, P. ; Atlhopheng, J. ; Barrera, J. ; Belgacem, A. ; Sole-Benet, A. ; Brito, J. ; Chaker, M. ; Chanda, R. ; Coelho, C. ; Darkoh, M. ; Diamantis, I. ; Ermolaeva, O. ; Fassouli, V. ; Fei, W. ; Feng, J. ; Fernandez, F. ; Ferreira, A. ; Gokceoglu, C. ; Gonzalez, D. ; Gungor, H. ; Hessel, R. ; Juying, J. ; Khatteli, H. ; Khitrov, N. ; Kounalaki, A. ; Laouina, A. ; Lollino, P. ; Lopes, M. ; Magole, L. ; Medina, L. ; Mendoza, M. ; Morais, P. ; Mulale, K. ; Ocakoglu, F. ; Ouessar, M. ; Ovalle, C. ; Perez, C. ; Perkins, J. ; Pliakas, F. ; Polemio, M. ; Pozo, A. ; Prat, C. ; Qinke, Y. ; Ramos, A. ; Ramos, J. ; Riquelme, J. ; Romanenkov, V. ; Rui, L. ; Santaloia, F. ; Sebego, R. ; Sghaier, M. ; Silva, N. ; Sizemskaya, M. ; Soares, J. ; Sonmez, H. ; Taamallah, H. ; Tezcan, L. ; Torri, D. ; Ungaro, F. ; Valente, S. ; Vente, J. de; Zagal, E. ; Zeiliguer, A. ; Zhonging, W. ; Ziogas, A. - \ 2014
Environmental Management 54 (2014)5. - ISSN 0364-152X - p. 971 - 982.
region ne spain - tillage erosion - soil displacement - translocation - vulnerability - sensitivity - performance - vegetation - systems - impact
Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators. The database described earlier in this issue by Kosmas and others (Environ Manage, 2013) for defining desertification risk was further analyzed to define the most important indicators related to the following degradation processes: water erosion in various land uses, tillage erosion, soil salinization, water stress, forest fires, and overgrazing. A correlation analysis was applied to the selected indicators in order to identify the most important variables contributing to each land degradation process. The analysis indicates that the most important indicators are: (i) rain seasonality affecting water erosion, water stress, and forest fires, (ii) slope gradient affecting water erosion, tillage erosion and water stress, and (iii) water scarcity soil salinization, water stress, and forest fires. Implementation of existing regulations or policies concerned with resources development and environmental sustainability was identified as the most important indicator of land protection.
Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach
Kosmas, C. ; Karis, O. ; Karavitis, C. ; Ritsema, C.J. ; Salvati, L. ; Acikalin, S. ; Alcala, S. ; Alfama, P. ; Atlhopheng, J. ; Barrera, J. ; Belgacem, A. ; Sole-Benet, A. ; Brito, J. ; Chaker, M. ; Chanda, R. ; Coelho, C. ; Darkoh, M. ; Diamantis, I. ; Ermolaeva, O. ; Fassouli, V. ; Fei, W. ; Fernandez, F. ; Ferreira, A. ; Gokceoglu, C. ; Gonzalez, D. ; Gungor, H. ; Hessel, R. ; Juying, J. ; Khatteli, H. ; Kounalaki, A. ; Laouina, A. ; Lollino, P. ; Lopes, M. ; Magole, L. ; Medina, L. ; Mendoza, M. ; Morais, P. ; Mulale, K. ; Ocakoglu, F. ; Ouessar, M. ; Ovalle, C. ; Perez, C. ; Perkins, J. ; Pliakas, F. ; Polemio, M. ; Pozo, A. ; Prat, C. ; Qinke, Y. ; Ramos, A. ; Riquelme, J. ; Romanenkov, V. ; Rui, L. ; Santaloia, F. ; Sebego, R. ; Sghaier, M. ; Silva, N. ; Sizemskaya, M. ; Soares, J. ; Sonmez, H. ; Taamallah, H. ; Tezcan, L. ; Torri, D. ; Ungaro, F. ; Valente, S. ; Vente, J. de; Zagal, E. ; Zeiliguer, A. ; Zhonging, W. ; Ziogas, A. - \ 2014
Environmental Management 54 (2014)5. - ISSN 0364-152X - p. 951 - 970.
mediterranean conditions - aggregate stability - soil properties - rock fragments - organic-matter - vegetation - tillage - biomass - erosion - greece
An approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia. Based on an existing geo-referenced database, classes were designated for each indicator and a sensitivity score to desertification was assigned to each class based on existing research. The obtained data were analyzed for the various processes of land degradation at farm level. The derived methodology was assessed using independent indicators, such as the measured soil erosion rate, and the organic matter content of the soil. Based on regression analyses, the collected indicator set can be reduced to a number of effective indicators ranging from 8 to 17 in the various processes of land degradation. Among the most important indicators identified as affecting land degradation and desertification risk were rain seasonality, slope gradient, plant cover, rate of land abandonment, land-use intensity, and the level of policy implementation.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.