Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    River scale model of an training dam using lightweight granulates
    Vermeulen, B. ; Boersema, M.P. ; Hoitink, A.J.F. ; Sieben, J. ; Sloff, C.J. ; Wal, M.F. van der - \ 2014
    Journal of Hydro-environment Research 8 (2014). - ISSN 1570-6443 - p. 88 - 94.
    sediment transport - spur dikes - bed
    Replacing existing river groynes with longitudinal training dams is considered as a promising flood mitigation measure in the main Dutch rivers, which can also serve to guarantee navigability during low flows and to create conditions favourable for ecological development. Whereas the bed response in the streamwise uniform part of a river trained by a longitudinal dam can be readily predicted, the bed response at the transition zones is unclear. In the present study, we investigate the local morphological effects resulting at the intake section of a longitudinal training dam, where the flow is distributed over the main channel and a side channel in between the dam and the river shore. A sediment recirculating model with a nearly undistorted geometry with respect to the prototype was setup. Lightweight polystyrene granulates were used as a surrogate for sediment, to properly scale the Shields parameter without compromising Froude scaling, and reach dynamical similarity. A laser scanner allowed collecting high-resolution bed elevation data. Results obtained under typical low flow and high flow conditions show a general deepening of the bed in the area adjacent to the training dam, in response to narrowing of the main channel. Scour at an upstream river groyne embedded in the model showed a scour hole which was deeper than realistic. Throughout the entire domain, bedforms developed featuring geometrical properties that reproduced the prototype conditions appropriately. Based on a comparison with characteristics from the River Waal, regarded as the prototype without a longitudinal dam, lightweight sediments were considered to be a proper choice for this study, in which bedload is the main sediment transport mode. The main conclusion regards the absence of significant morphodynamic developments at the intake section, both during the high flow experiment and during the low flow experiment, which can be attributed to the alignment of the dam with the local streamlines.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.