Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 5 / 5

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1179415
Check title to add to marked list
Soil heterogeneity and plant species diversity in experimental grassland communities: contrasting effects of soil nutrients and pH at different spatial scales
Xue, Wei ; Bezemer, Martijn T. ; Berendse, Frank - \ 2019
Plant and Soil 442 (2019)1-2. - ISSN 0032-079X - p. 497 - 509.
Focal scale - Patch size - Plant community composition - Plant species diversity - Soil heterogeneity - Soil nutrients and pH

Background and aims: Current knowledge of soil heterogeneity-diversity relationships (HDR) is largely based on studies manipulating single factor, but the advancements in HDR may require a comprehensive experiment incorporating multiple factors. Methods: We conducted a three-year field experiment in which a seed mixture of 16 common grassland species was sown in plots with heterogeneous soils consisting of small (10 cm × 10 cm) or large patches (30 cm × 30 cm) of low and high nutrients or low and high pH, and homogeneous soils with an even mixture of low and high nutrient/pH soils. Soil nutrients and pH were manipulated in separate treatments. We determined plant species richness and diversity at two focal scales (40 cm × 40 cm plot-scale and 10 cm × 10 cm patch-scale). Results: Plot-scale richness and diversity were not influenced by soil heterogeneity, but patch-scale richness was lower in plots with heterogeneous nutrients than in plots where nutrients were distributed homogeneously. There was no difference between the two heterogeneous nutrient soils with different grain sizes. Patch-scale diversity was higher in heterogeneous pH soils of large patch size than in heterogeneous pH soils of small patch size or the homogeneous pH soil at the final harvest. Species richness and diversity quantified at both plot and patch scales declined in all soils over time. Conclusions: The influence of soil heterogeneity on plant species diversity depends on whether the soil varies in nutrients or pH, and on the temporal-spatial scale at which species diversity and soil heterogeneity are measured. These results indicate that soil heterogeneity has the potential to promote plant coexistence and future HDR studies should consider multiple soil factors at various temporal-spatial scales.

Data from: Spatial heterogeneity in plant-soil feedbacks alters competitive interactions between two grassland plant species
Xue, Wei ; Berendse, F. ; Bezemer, T.M. - \ 2018
soil heterogeneity - plant-soil feedback - intra- and interspecific competition - plant-plant interactions - plant-soil interactions - soil origin - soil nutrient - patchy distribution
1. The effects of plants on soil vary greatly between plant species and in mixed plant communities this can lead to spatial variation in plant-soil feedback (PSF) effects. Such spatial effects are thought to influence plant species coexistence, but the empirical evidence for this hypothesis is limited. 2. Here, we investigate how spatial heterogeneity in PSFs influences plant growth and competition. The experiment was carried out with high and low nutrient soils to examine how these effects depend on soil fertility. We collected soil from field plots planted for three years with monocultures of Anthoxanthum odoratum and Centaurea jacea and tested the performance of the two species in a greenhouse experiment in heterogeneous soils consisting of patches of “own” and “foreign” soils and in soils where the “own” and “foreign” soils were mixed homogeneously. In the test phase, plants were grown in monocultures and in 1:1 mixtures in live or sterilized soils. 3. Overall, A. odoratum in monocultures produced less aboveground biomass in heterogeneous soils than in homogeneous soils. Centaurea jacea produced less belowground biomass in live heterogeneous soils than in live homogeneous soils, but there was no difference between sterile heterogeneous and homogeneous soils. The belowground biomass per patch varied more in pots with live heterogeneous soils than in pots with live homogeneous soils for both plant species, but there was no difference between pots with sterile heterogeneous and homogeneous soils. In pots with plant mixtures, the difference in aboveground biomass between the two competing species tended to be smaller in heterogeneous than in homogeneous soils. In pots with heterogeneous soils, both plant species grown in mixtures produced more aboveground biomass in “foreign” soil patches than in “own” soil patches. The responses of plants to heterogeneous PSFs were not different between low and high nutrient soils. 4. Our results show that spatially heterogeneous PSFs can influence plant performance and competition via reducing the growth inequality between the two competing species by allowing selective growth in foreign soil patches, independent of initial soil nutrient availability. Such effect may slow down exclusion processes and thus promote the coexistence of competing species at the local scale in mixed plant communities.
Games on the checkerboard : How soil heterogeneity influences plant species coexistence
Xue, Wei - \ 2018
Wageningen University. Promotor(en): F. Berendse; T.M. Bezemer. - Wageningen : Wageningen University - ISBN 9789463433112 - 182
Spatial heterogeneity in plant–soil feedbacks alters competitive interactions between two grassland plant species
Xue, Wei ; Berendse, Frank ; Bezemer, T.M. - \ 2018
Functional Ecology 32 (2018)8. - ISSN 0269-8463 - p. 2085 - 2094.
intra- and interspecific competition - patchy distribution - plant–plant interactions - plant–soil feedback - plant–soil interactions - soil heterogeneity - soil nutrient - soil origin

The effects of plants on soil vary greatly between plant species and in mixed plant communities this can lead to spatial variation in plant-soil feedback (PSF) effects. Such spatial effects are thought to influence plant species coexistence, but the empirical evidence for this hypothesis is limited. Here, we investigate how spatial heterogeneity in PSFs influences plant growth and competition. The experiment was carried out with high and low nutrient soils to examine how these effects depend on soil fertility. We collected soil from field plots planted for three years with monocultures of Anthoxanthum odoratum and Centaurea jacea and tested the performance of the two species in a greenhouse experiment in heterogeneous soils consisting of patches of “own” and “foreign” soils and in soils where the “own” and “foreign” soils were mixed homogeneously. In the test phase, plants were grown in monocultures and in 1:1 mixtures in live or sterilized soils. Overall, A. odoratum in monocultures produced less aboveground biomass in heterogeneous soils than in homogeneous soils. Centaurea jacea produced less belowground biomass in live heterogeneous soils than in live homogeneous soils, but there was no difference between sterile heterogeneous and homogeneous soils. The belowground biomass per patch varied more in pots with live heterogeneous soils than in pots with live homogeneous soils for both plant species, but there was no difference between pots with sterile heterogeneous and homogeneous soils. In pots with plant mixtures, the difference in aboveground biomass between the two competing species tended to be smaller in heterogeneous than in homogeneous soils. In pots with heterogeneous soils, both plant species grown in mixtures produced more aboveground biomass in “foreign” soil patches than in “own” soil patches. The responses of plants to heterogeneous PSFs were not different between low and high nutrient soils. Our results show that spatially heterogeneous PSFs can influence plant performance and competition via reducing the growth inequality between the two competing species by allowing selective growth in foreign soil patches, independent of initial soil nutrient availability. Such effect may slow down exclusion processes and thus promote the coexistence of competing species at the local scale in mixed plant communities. A plain language summary is available for this article.

Density-dependency and plant-soil feedback : former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks
Xue, Wei ; Bezemer, T.M. ; Berendse, Frank - \ 2018
Plant and Soil 428 (2018)441-452. - ISSN 0032-079X - p. 441 - 452.
Interspecific competition - Intraspecific competition - Plant abundance - Plant density - Plant-soil feedbacks - Plant-soil interactions - Soil biota

Backgrounds and aims: Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods: We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in mixtures with three ratios (3:1, 2:2 and 1:3) for three years. We then tested in a greenhouse experiment the performance of A. odoratum and C. jacea in pots planted with monocultures and 1:1 mixtures and filled with live and sterile soils collected from the field plots. Results: In the greenhouse experiment, C. jacea produced less aboveground biomass in soil conditioned by C. jacea monocultures than in soil conditioned by A. odoratum monocultures, while the aboveground biomass of A. odoratum in general did not differ between the two monospecific soils. The negative PSF effect was greater in the 1:1 plant mixture than in plant monocultures for A. odoratum but did not differ for C. jacea. In the greenhouse experiment, the performance of C. jacea relative to A. odoratum in the 1:1 plant mixture was negatively correlated to the abundance of C. jacea in the field plot where the soil was collected from. This relationship was significant both in live and sterile soils. However, there was no relationship between the performance of A. odoratum relative to C. jacea in the 1:1 plant mixture in the greenhouse experiment and the abundance of A. odoratum in the field plots. Conclusions: The response of a plant to PSF depends on whether the focal species grows in monocultures or in mixtures and on the identity of the species. Interspecific competition can exacerbate the negative plant-soil feedbacks compared to intraspecific competition when a plant competes with a stronger interspecific competitor. Moreover, the abundance of a species in mixed plant communities, via plant-soil feedback, negatively influences the relative competitiveness of that species when it grows later in interspecific competition, but this effect varies between species. This phenomenon may contribute to the coexistence of competing plants under natural conditions through preventing the dominance of a particular plant species.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.