Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 21 - 29 / 29

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria
    Ronner, E. ; Franke, A.C. ; Vanlauwe, B. ; Dianda, M. ; Edeh, E. ; Ukem, B. ; Bala, A. ; Heerwaarden, J. van; Giller, K.E. - \ 2016
    Field Crops Research 186 (2016). - ISSN 0378-4290 - p. 133 - 145.
    Bradyrhizobium - Smallholder farmers - Sustainable intensification - West Africa

    Soybean yields could benefit from the use of improved varieties, phosphate-fertilizer and rhizobium inoculants. In this study, we evaluated the results of widespread testing of promiscuous soybean varieties with four treatments: no inputs (control); SSP fertilizer (P); inoculants (I) and SSP plus inoculants (P + I) among smallholder farmers in northern Nigeria in 2011 and 2012. We observed a strong response to both P and I, which significantly increased grain yields by 452 and 447 kg ha-1 respectively. The additive effect of P + I (777 kg ha-1) resulted in the best average yields. Variability in yield among farms was large, which had implications for the benefits for individual farmers. Moreover, although the yield response to P and I was similar, I was more profitable due to its low cost. Only 16% of the variability in control yields could be explained by plant establishment, days to first weeding, percentage sand and soil exchangeable magnesium. Between 42% and 61% of variability in response to P and/or I could be explained by variables including year, farm size, plant establishment, total rainfall and pH. The predictive value of these variables was limited, however, with cross-validation R2 decreasing to about 15% for the prediction between Local Government Areas and 10% between years. Implications for future research include our conclusion that averages of performance of technologies tell little about the adoption potential for individual farmers. We also conclude that a strong agronomic and economic case exists for the use of inoculants with promiscuous soybean, requiring efforts to improve the availability of good quality inoculants in Africa.

    Towards sustainable intensification of apple production in China - Yield gaps and nutrient use efficiency in apple farming systems
    Wang, Na ; Wolf, Joost ; Zhang, Fu Suo - \ 2016
    Journal of Integrative Agriculture 15 (2016)4. - ISSN 2095-3119 - p. 716 - 725.
    Apple production - China - Environmental problems - Nutrient use efficiency - Potential yield - Sustainable intensification - Yield gaps

    China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.

    Making the most of our land : Managing soil functions from local to continental scale
    Schulte, Rogier P.O. ; Bampa, Francesca ; Bardy, Marion ; Coyle, Cait ; Creamer, Rachel E. ; Fealy, Reamonn ; Gardi, Ciro ; Ghaley, Bhim Bahadur ; Jordan, Phil ; Laudon, Hjalmar ; O'Donoghue, Cathal ; Ó'hUallacháin, Daire ; O'Sullivan, Lilian ; Rutgers, Michiel ; Six, Johan ; Toth, Gergely L. ; Vrebos, Dirk - \ 2015
    Frontiers in Environmental Science 3 (2015)DEC. - ISSN 2296-665X
    Ecosystem services - Functional Land Management - Policy - Soil functions - Sustainable intensification

    The challenges of achieving both food security and environmental sustainability have resulted in a confluence of demands on land within the European Union (EU): we expect our land to provide food, fiber and fuel, to purify water, to sequester carbon, and provide a home to biodiversity as well as external nutrients in the form of waste from humans and intensive livestock enterprises. All soils can perform all of these five functions, but some soils are better at supplying selective functions. Functional Land Management is a framework for policy-making aimed at meeting these demands by incentivizing land use and soil management practices that selectively augment specific soil functions, where required. Here, we explore how the demands for contrasting soil functions, as framed by EU policies, may apply to very different spatial scales, from local to continental scales. At the same time, using Ireland as a national case study, we show that the supply of each soil function is largely determined by local soil and land use conditions, with large variations at both local and regional scales. These discrepancies between the scales at which the demands and supply of soil functions are manifested, have implications for soil and land management: while some soil functions must be managed at local (e.g., farm or field) scale, others may be offset between regions with a view to solely meeting national or continental demands. In order to facilitate the optimization of the delivery of soil functions at national level, to meet the demands that are framed at continental scale, we identify and categorize 14 policy and market instruments that are available in the EU. The results from this inventory imply that there may be no need for the introduction of new specific instruments to aid the governance of Functional Land Management. We conclude that there may be more merit in adapting existing governance instruments by facilitating differentiation between soils and landscapes.

    Report of FACCE-JPI Knowledge Network Planning Meeting - Developing a Sustainable Intensification Knowledge Network, 3 February 2015, London
    Löffler, H.J.M. ; Ittersum, M.K. van; Bunthof, C.J. - \ 2015
    FACCE-JPI - 6 p.
    FACCE JPI - Sustainable intensification - Knowledgde network - agriculture - food security - climate change - FACCE JPI - knowledge network - sustainable intensification - FACCE-JPI - Bioeconomy
    Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia
    Valbuena Vargas, Diego ; Tui, Sabine Homann Kee ; Erenstein, Olaf ; Teufel, Nils ; Duncan, Alan ; Abdoulaye, Tahirou ; Swain, Braja ; Mekonnen, Kindu ; Germaine, Ibro ; Gérard, Bruno - \ 2015
    Agricultural Systems 134 (2015). - ISSN 0308-521X - p. 107 - 118.
    Biomass - Conservation agriculture - Crop-livestock farms - Intensification - Intensity - Sustainable intensification

    Crop residues (CR) have become a limited resource in mixed crop-livestock farms. As a result of the increasing demand and low availability of alternative resources, CR became an essential resource for household activities, especially for livestock keeping; a major livelihood element of smallholder farmers in the developing world. Farmers' decisions on CR use are determined by farmers' preferences, total crop production, availability of alternative resources and demand for CR. Interaction of these determinants can result in pressures and trade-offs of CR use. Determinants, pressures and trade-offs are shaped by the specific socio-economic and agro-ecological context of these mixed farms. The objective of this paper is to provide a comparative analysis of the determinants of CR use and to examine some options to cope with pressures and trade-offs in 12 study sites across Sub-Saharan Africa and South Asia. Drawing on socio-economic data at household and village level, we describe how cereal intensification and livestock feed demand influence use, pressures and trade-offs of CR use across study sites, specifically cereal residue. Our results show that in low cereal production and livestock feed demand sites, despite a low demand for CR and availability of alternative biomass, pressures and trade-offs of CR use are common particularly in the dry season. In sites with moderate cereal production, and low-moderate and moderate livestock feed demand, alternative biomass resources are scarce and most residues are fed to livestock or used to cover household needs. Subsequently, pressures and potential trade-offs are stronger. In sites with low cereal production and high livestock feed demand, pressures and trade-offs depend on the availability of better feed resources. Finally, sites with high cereal production and high livestock feed demand have been able to fulfil most of the demand for CR, limiting pressures and trade-offs. These patterns show that agricultural intensification, better management of communal resources and off-farm activities are plausible development pathways to overcome pressures and trade-offs of CR use. Although technologies can largely improve these trends, research and development should revisit past initiatives so as to develop innovative approaches to tackle the well-known problem of low agricultural production in many smallholder mixed systems, creating more sustainable futures.

    Improved pasture and herd management to reduce greenhouse gas emissions from a Brazilian beef production system
    Mazzetto, A.M. ; Feigl, B.J. ; Schils, R.L.M. ; Cerri, C.E.P. ; Cerri, C.C. - \ 2015
    Livestock Science 175 (2015). - ISSN 1871-1413 - p. 101 - 112.
    Beef herd - Brazil - Carbon dioxide - Methane - Nitrous oxide - Sustainable intensification

    Brazilian farms produce 15% of the world[U+05F3]s beef, and consequently they are important sources of greenhouse gases (GHG). The beef sector faces the challenge to meet the increasing demand without further increase of GHG emissions. To reduce the pressure on forests it is essential that farmers are provided with sustainable options of intensification of pasture growth and cattle production. The improvement of the whole-farm beef production system is essential to reduce emissions from all relevant sources, like land use, land use change and livestock. The main objective was to quantify the GHG gas emissions of different beef production systems in Brazil. Therefore we developed a whole farm model that allowed us to calculate GHG emissions from all-important sources (only "on-farm" i.e., not considering emissions from the production of fertilizer, lime or other inputs) for a beef production system in Brazil. We studied the effects of intensification in several steps, starting with a baseline extensive system, followed by four steps of intensification. The main differences between the scenarios are related to pasture management, i.e. continuous or rotational grazing, pasture condition, stocking rate, use of lime and fertilizer, and irrigation; and animal performance, i.e. calving interval, age at first calving, conception rate, total life time until slaughter, and genetic improvement. Compared to the baseline extensive scenario, the total pasture area decreased up to 92% in the most intensified system, while beef production nearly doubled. Intensification increased the number of calves, steers and heifers decreased the total production cycle time and the slaughter age of the steers. Overall, the emission of kgCO2eqkgcarcass-1 was lower with increasing intensification, with an average of 41kgCO2eqkgcarcass-1. The emissions of CH4 decreased, while the emissions of N2O and CO2 increased due to nitrogen fertilizer and lime application. The intensification of beef production, through improved pasture and herd management, reduced the GHG emissions per kg of beef from 2% to 57%. The complete cycle of beef production in intensified systems required less time (years) and area (ha), and may thus help to alleviate the pressure on forests.

    Beyond conservation agriculture
    Giller, K.E. ; Andersson, J.A. ; Corbeels, Marc ; Kirkegaard, John ; Mortensen, David ; Erenstein, Olaf ; Vanlauwe, Bernard - \ 2015
    Frontiers in Plant Science 6 (2015)OCTOBER. - ISSN 1664-462X - 14 p.
    Climate smart agriculture - Legumes - Mulch - Soil erosion - Sustainable intensification - Systems agronomy

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

    How effective are on-farm conservation land management strategies for preserving ecosystem services in developing countries? A systematic map protocol
    Thorn, Jessica ; Snaddon, Jake ; Waldron, Anthony ; Kok, Kasper ; Zhou, Wen ; Bhagwat, Shonil ; Willis, Kathy ; Petrokofsky, Gillian - \ 2015
    Environmental Evidence 4 (2015). - ISSN 2047-2382 - 13 p.
    Agro-ecology - Conservation agriculture - Decision-making - Ecosystem services - Evidence-based environmental policy - In-field assessment - Land sharing - Site-specific management - Sustainable intensification

    Background: An extensive body of literature in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on sustainably meeting future food demand, by making farms more productive and resilient, and contributing to better nutrition and livelihoods of farmers. In Africa alone, some research has estimated a two-fold yield increase if food producers capitalize on new and existing knowledge from science and technology. Site-specific strategies adopted with the aim of improving ecosystem services may incorporate principles of multifunctional agriculture, sustainable intensification and conservation agriculture. However, a coherent synthesis and review of the evidence of these claims is largely absent, and the quality of much of this literature is questionable. Moreover, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Objectives: This systematic map is stimulated by an interest to (1) collate evidence on the effectiveness of on-farm conservation land management for preserving and enhancing ecosystem services in agricultural landscapes, by drawing together the currently fragmented and multidisciplinary literature base, and (2) geographically map what indicators have been used to assess on-farm conservation land management. For both questions, we will focus on 74 low-income and developing countries, where much of the world's agricultural expansion is occurring, yet 80% of arable land is already used and croplands are yielding well below their potential. Methods/Design: To this end, reviewers will systematically search bibliographic databases for peer-reviewed research from Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 22 subject-specific or institutional websites. Boolean search operators will be used to create search strings where applicable. Ecosystem services included in the study are pollination services; pest-, carbon-, soil-, and water-regulation; nutrient cycling; medicinal and aromatic plants; fuel wood and cultural services. Outputs of the systematic map will include a database, technical report and an online interactive map, searchable by topic. The results of this map are expected to provide clarity about synergistic outcomes of conservation land management, which will help support local decision-making.

    The role of food retailers in improving resilience in global food supply
    Macfadyen, Sarina ; Tylianakis, J.M. ; Letourneau, D.K. ; Benton, T.G. ; Tittonell, Pablo ; Perring, M.P. ; Gómez-Creutzberg, Carla ; Báldi, András ; Holland, J.M. ; Broadhurst, Linda ; Okabe, Kimiko ; Renwick, A.R. ; Gemmill-Herren, Barbara ; Smith, H.G. - \ 2015
    Global Food Security 7 (2015). - ISSN 2211-9124 - p. 1 - 8.
    Ecosystem services - Landscape - Resilience - Supermarkets - Sustainable intensification - Vulnerability

    We urgently need a more resilient food supply system that is robust enough to absorb and recover quickly from shocks, and to continuously provide food in the face of significant threats. The simplified global food supply chain we currently rely upon exacerbates threats to supply and is unstable. Much attention has been given to how producers can maximise yield, but less attention has been given to other stakeholders in the supply chain. Increasingly, transnational food retailers (supermarkets) occupy a critical point in the chain, which makes them highly sensitive to variability in supply, and able to encourage change of practice across large areas. We contend that the concentration in the chain down to a few retailers in each country provides an opportunity to increase resilience of future supply given appropriate, scale-dependent interventions. We make ten recommendations aimed at reducing variability in supply that can be driven by retailers (although some of the interventions will be implemented by producers). Importantly, resilience in our food supply requires the restoration and expansion of ecosystem services at the landscape-scale.

    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.