Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Coupled carbon-water exchange of the Amazon rain forest. II. Comparison of predicted and observed seasonal exchange of energy, CO2, isoprene and ozone at a remote site in Rondônia
    Simon, E. ; Meixner, F.X. ; Rummel, U. ; Ganzeveld, L.N. ; Ammann, C. ; Kesselmeier, J. - \ 2005
    Biogeosciences 2 (2005)3. - ISSN 1726-4170 - p. 255 - 275.
    atmospheric boundary-layers - organic-compound emissions - dry deposition - tropical forest - monoterpene emission - growth-conditions - temperate forest - deciduous forest - gas-exchange - model
    A one-dimensional multi-layer scheme describing the coupled exchange of energy and CO2, the emission of isoprene and the dry deposition of ozone is applied to a rain forest canopy in southwest Amazonia. The model was constrained using mean diel cycles of micrometeorological quantities observed during two periods in the wet and dry season 1999. Calculated net fluxes and concentration profiles for both seasonal periods are compared to observations made at two nearby towers. The modeled day- and nighttime thermal stratification of the canopy layer is consistent with observations in dense canopies. The observed and modeled net fluxes above and H2O and CO2 concentration profiles within the canopy show a good agreement. The predicted net carbon sink decreases from 2.5 t C ha-1 yr-1 for wet season conditions to 1 t C ha-1 yr-1 for dry season conditions, whereas observed and modeled midday Bowen ratio increases from 0.5 to 0.8. The evaluation results confirmed a seasonal variability of leaf physiological parameters, as already suggested in a companion study. The calculated midday canopy net flux of isoprene increased from 7.1 mg C m-2 h-1 during the wet season to 11.4 mg C m-2 h-1 during the late dry season. Applying a constant emission capacity in all canopy layers, resulted in a disagreement between observed and simulated profiles of isoprene concentrations, suggesting a smaller emission capacity of shade adapted leaves and deposition to the soil or leaf surfaces. Assuming a strong light acclimation of emission capacity, equivalent to a 66% reduction of the standard emission factor for leaves in the lower canopy, resulted in a better agreement of observed and modeled concentration profiles and a 30% reduction of the canopy net flux compared to model calculations with a constant emission factor. The mean calculated ozone flux for dry season conditions at noontime was ˜12 n mol m-2 s-1, agreeing well with observed values. The corresponding deposition velocity increased from 0.8 cm s-1 to >1.6 cm s-1 in the wet season, which can not be explained by increased stomatal uptake. Considering reasonable physiological changes in stomatal regulation, the modeled value was not larger than 1.05 cm s-1. Instead, the observed fluxes could be explained with the model by decreasing the cuticular resistance to ozone deposition from 5000 to 1000 s m-1
    Glutathione protects Lactococcus lactis against oxidative stress
    Li, Y. ; Hugenholtz, J. ; Abee, T. ; Molenaar, D. - \ 2003
    Applied and Environmental Microbiology 69 (2003)10. - ISSN 0099-2240 - p. 5739 - 5745.
    escherichia-coli - saccharomyces-cerevisiae - oxidized glutathione - growth-conditions - acid bacteria - reductase - thioredoxin - purification - peroxidase - metabolism
    Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to similar to60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.