Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 19 / 19

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Biomassa voor de energievoorziening van tuinbouwclusters
    Zwart, H.F. de; Ruijs, M.N.A. ; Visser, H.J.M. - \ 2016
    Bleiswijk : Wageningen UR Glastuinbouw (Rapport GTB 1393) - 34
    bio-energie - glastuinbouw - haalbaarheidsstudies - economische haalbaarheid - warmte - kooldioxide - elektriciteit - biomassa - biobased economy - biochar - verbranding - opwekking van elektriciteit - warmteproductie - bioenergy - greenhouse horticulture - feasibility studies - economic viability - heat - carbon dioxide - electricity - biomass - biobased economy - biochar - combustion - electricity generation - heat production
    Biomass combustion in combination with a cluster of greenhouses to provide heat, CO2 and electricity can provide a partly solution to the sustainability of the horticultural sector. A biomass gasification plant could also provide valuable biochar, the result of partial combustion of biocarbon. This was shown to have attractive characteristics to be used in high quality potting soil. Despite the high value of the biochar (contributing for 16% of the income from the plant), the economic feasibility of a biomass combustion plant depends heavily on governmental subsidies (SDE +). When the developed technology is used on a practical scale, a biomass plant of 8 MW thermal power and 1.4 MW of electrical power is a sound size. Such a plant fits well with a horticultural cluster of 15 hectares, consisting of 6 ha Tomato, 6 ha Pepper and 3 hectares of Chrysanthemum. The biomass plant produces over 91% of the heating and 95% of the CO2 requirement and 67% of the electricity counsumed. However during winter a lot of electricity will have to be bought, which is compensated with selling to the public grid in summer. The biomass combustion plant will mainly run on biomass is supplied from elsewhere. The biomass from the local cluster covers only 0.3% of the combusted amount. If all available biomass from Netherlands territory would be used to heat greenhouses about 20% of greenhouse industry could make use of system like described in this report.
    Electricity from wetlands : technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode
    Wetser, K. - \ 2016
    Wageningen University. Promotor(en): Cees Buisman, co-promotor(en): David Strik. - Wageningen : Wageningen University - ISBN 9789462576964 - 153
    electricity generation - wetlands - fuel cells - bioenergy - salt marshes - spartina anglica - phragmites australis - electrodes - opwekking van elektriciteit - wetlands - brandstofcellen - bio-energie - zoutmoerassen - spartina anglica - phragmites australis - elektrodes

    Sustainable electricity generation by the plant microbial fuel cell

    Fossil fuels are currently the main source of electricity production. Combustion of fossil fuels causes air pollution severely affecting human health and nature. This results in an increasing demand for renewable electricity sources. One of the emerging renewable electricity technologies is the plant microbial fuel cell (PMFC) as explained in chapter 1. PMFC generates electricity from the rhizodeposits of living plants. Naturally occurring electrochemically active microorganisms oxidize the rhizodeposits producing electrons at the anode of the PMFC. The electrons flow from the anode, via an external circuit where the electricity is harvested, to the cathode. At the cathode, the electrons reduce oxygen to water. PMFC is based on naturally occurring sustainable and renewable processes without net emissions and competition for arable land or nature. Large scale application of the PMFC is preferred in wetlands because a large waterlogged area is required.

    Prior to application, the cathode limitations of the PMFC have to be solved. Oxygen reduction at the cathode is slow, limiting the current and power output of the PMFC. An unsustainable chemical cathode is often used in PMFC research to overcome the cathode limitations. The sustainable oxygen reducing cathode has to be catalyzed when integrated in the PMFC. Most chemical catalyst are expensive and prohibit the commercial use in the PMFC. Oxygen reduction can also be biologically catalyzed by cheap and self-replenishing microorganisms. Next to the biocathode, also a suitable design of the PMFC has to be developed before application in wetlands. A tubular design was previously developed which can be invisibly integrated in wetlands. However, this design still used a chemical cathode and energy intensive pumping. The oxygen reducing biocathode should be integrated in the tubular design and oxygen should be passively supplied in the cathode.

    The objective of this thesis is to apply PMFC in wetlands with a sustainable biocathode. First, the biocathode is integrated in a lab scale PMFC. Afterwards, the PMFC is installed in wetlands using an improved tubular design with an integrated biocathode and passive oxygen supply.

    Lab scale experiments: integration of the biocathode and electricity localization in the bioanode of the PMFC

    In chapter 2, the oxygen reducing biocathode is integrated in a flat plate lab scale PMFC replacing the chemical ferricyanide cathode. The PMFC operated as a completely biocatalyzed system for 151 days. The sustainable PMFC with a biocathode was able to generate more power than the PMFC with a chemical cathode. The long term power generation of the lab scale PMFC improved from 155 mW m-2 plant growth area (PGA) to a record of 240 mW m-2 PGA. This record was reached due to the higher redox potential of oxygen reduction compared to ferricyanide reduction. Oxygen reduction was effectively catalyzed by microorganisms lowering the voltage losses at the cathode. As a result, the PMFC with a biocathode operated at a 127 mV higher cathode potential than a similar PMFC with a chemical ferricyanide cathode. The long term current generation of both PMFCs was 0.4 A m-2 PGA. The current generation was likely limited by the substrate availability in the anode of the PMFC.

    In chapter 3, the biocathode is further investigated. This chapter shows that the oxygen reducing biocathode can also catalyze the reversible reaction, water oxidation. Water is the most abundant electron donor available for electrochemical fuel production like the reduction of protons to hydrogen and the reduction of carbon dioxide to hydrocarbons. However, the water oxidation reaction is currently hampering the development of large scale water oxidation technologies. A bioanode containing electrochemically active microorganisms was able to reach a current density of 0.93 A m-2 at 0.7 V overpotential with a 22 % Coulombic efficiency linked to water oxidation. An optimized system could be used to produce fuels on a large scale.

    The flat plate PMFC of chapter 2 was also used to localize the electricity generation in the PMFC (chapter 4). In this experiment, the anode was partitioned in 30 separate small anodes at different width and depths. The current generation of each anode was analyzed over time and linked to the plant roots. The results show that after a start-up period of 70 days, significantly higher current was generated at anodes close to the plant roots due to rhizodeposition. Besides rhizodeposition (i.e. electron donors), the plant roots also excrete oxygen which is an electron acceptor lowering the current generation of the PFMC. Also oxygen was measured at the anodes close to the plant roots. This likely resulted in internal currents in the PMFC. Current was likely generated both from living and death roots. The electrons in the PMFC were probably transferred via mediators to locations without roots as mediators were present also at locations without plant roots. These mediators were likely excreted by plants and/or microorganisms in the anode. Electrons were likely not transferred over centimeter distance through conductive microorganism on the plant roots in the PMFC.

    Installation of the tubular PMFC with an integrated biocathode in wetlands

    After the successful integration of the biocathode in the PMFC, the focus of the research changed to application in wetlands. Two wetlands with an abundant occurrence in the Netherlands were investigated in this research. The first wetland was a Phragmites australis dominated fen peat soil, a large perennial grass. The peat soil in this research was collected in national park Alde Feanen in the north of the Netherlands. The second investigated wetland was a Spartina anglica dominated salt marsh. Spartina anglica is a perennial grass found in coastlines spread over the world. The salt marsh was collected in the Oosterschelde tidal basin in the southwest of the Netherlands.

    The first experiment in the wetlands was conducted to investigate the spatial and temporal differences in current and power generation in and between wetlands (chapter 5). PMFCs in the salt marsh were able to generate more than 10 times more power than the same PMFCs in the peat soil (18 vs 1.3 mW m-2 PGA on a long term). The higher power generation is mainly explained by the high ionic conductivity of the salt marsh and the presence of sulfide which is also oxidized next to the rhizodeposits at the anode of the PMFC. The top layer of the salt marsh generated most power due to the presence of the plants and tidal advection. In the peat soil, there was no significant difference in power generation over depth. Even though, in the top layer more living roots were present. Also the dead roots and organics in peat can be oxidized by the PMFC. In chapter 5, also the maximum current and power output of the wetlands was predicted based on rhizodeposition of the investigated plants and microbial processes in these wetlands. The calculations showed that the potential current generation of PMFC in the salt marsh is 0.21-0.48 A m-2 PGA and in peat soil 0.15-0.86 A m-2. In the peat soil, the PMFC is potentially able to generate a power density up to 0.52 W m-2 PGA.

    The second experiment in the wetland was the installation of a tubular PMFC with an in situ started oxygen reducing biocathode and passive oxygen supply into the cathode (chapter 6). The anode was the outside of the tube and placed directly between the plant roots. The oxygen reducing biocathode was located inside the tube. A silicone gas diffusion tube was placed in the cathode compartment to passively supply the required oxygen. The tubular PMFC with biocathode was successfully installed and started in the peat soil reaching a maximum daily average power generation of 22 mW m-2 PGA. In the salt marsh, the tubular biocathode PMFC only started while supplying pure oxygen in the gas diffusion tube. Air diffusion did not result in the start-up of the biocathode, likely because the oxygen was directly reduced via internal currents and therefore more oxygen was required. Once started with pure oxygen, the tubular PMFC was able to generate 82 mW m-2 PGA which was again higher than the peat soil. Completely biocatalyzed tubular PMFC were installed in both wetlands with natural occurring microorganisms in the anode and cathode. The power generation can be further increased by improving the PMFC design limiting crossover of oxygen and substrate.

    Future outlook: application of the PMFC in wetlands

    In chapter 5, the potential power generation of the two investigated wetlands was calculated. In chapter 7, these calculations were extended to a worldwide scale. PMFC applied in all wetlands could generate 0.67 to 1.35 TW and could cover 30 to 60 % of the global electricity consumption. 70 % of all the potential power could be generated in the tropics. Worldwide, 1.1 billion people have insufficient access to electricity from which 88 % lives in the tropics (i.e. Sub-Saharan Africa and South Asia). PMFC could be used to reach universal access of electricity in these locations and decrease the amount of premature deaths due to air pollution.

    PMFC can be applied with passive or active oxygen supply from the outside air into the silicone tube. The used tubular PMFC with passive oxygen supply can have a maximum length of less than one meter. Active supply of oxygen reduces the net power output of the PMFC, but allowing installation of long tubular PMFC. However, in both cases the material costs should be significantly reduced for economically feasible application at large scale. The costs of the material should be decreased to less than 1 % of the current PMFC costs to have a payback time of 50 years in the Dutch electricity market for only the tubular PMFC. Further cost reduction is required when also the current collectors, electricity transmission, production and installation costs are included. Application of PMFC in remote locations increases the economic feasibility of the PMFC as the PMFC could be applied independent from the grid reducing the transmission costs and avoiding the regular electricity network charges.

    Application of the PMFC in the total area of Spartina anglica salt marsh in the Oosterschelde, the location were the plants were collected, could produce a total of 11.6 GWh yr-1. The Oosterschelde could produce the electricity consumption of 8,360 persons and as such produce the electricity need of an average village directly located at the tidal basin. The Phragmites australis peat soil in the Alde Feanen national park could produce 2.5 GWh yr-1. The electricity could be directly used for ecotourism purposes, for example for the use of electric boats and a holiday park.

    Proefinstallatie brengt 'blauwe energie' dichterbij
    Didde, R. ; Baptist, M.J. - \ 2014
    Resource: weekblad voor Wageningen UR 9 (2014)8. - ISSN 1874-3625 - p. 6 - 6.
    energie - duurzame energie - opwekking van elektriciteit - energiebronnen - zoet water - zout water - milieutechnologie - biobased economy - nadelige gevolgen - waddenzee - energy - sustainable energy - electricity generation - energy sources - fresh water - saline water - environmental technology - biobased economy - adverse effects - wadden sea
    Een wereldprimeur voor Nederland: 26 november 2014 opende koning Willem-Alexander op de Afsluitdijk de eerste proefinstallatie voor ‘blauwe energie’. Hier wordt energie opgewekt door contact tussen zout en zoet water. Wageningse wetenschappers stonden aan de wieg van de nieuwe energievorm.
    EnerVatiestal: energiebesparende en - opwekkende technieken : bijdrage aan een energieneutrale stal voor de varkenshouderij
    Kasper, G.J. ; Ellen, H.H. - \ 2014
    Wageningen : Wageningen UR Livestock Research (Rapport / Wageningen UR Livestock Research 775) - 35
    energiebesparing - opwekking van elektriciteit - varkensstallen - varkenshouderij - energiegebruik - energiekosten - duurzame veehouderij - duurzame energie - energy saving - electricity generation - pig housing - pig farming - energy consumption - energy expenditure - sustainable animal husbandry - sustainable energy
    Quantifying the effect of energy saving and sustainable energy-generating techniques on energy use and energy cost in breeding and fattening pigs.
    Zonneweide resultaten t/m 2013
    Spruijt-Verkerke, J. - \ 2014
    Lelystad : PPO AGV (Rapporten PPO AGV 589) - 29
    zonne-energie - opwekking van elektriciteit - zonnecollectoren - energie - rentabiliteit - prestatieniveau - fotovoltaïsche cellen - prestatie van apparatuur - solar energy - electricity generation - solar collectors - energy - profitability - performance - photovoltaic cells - equipment performance
    In de loop van 2011 is op de proeflocatie van ACRRES (onderdeel van Wageningen UR) in Lelystad de Zonneweide gerealiseerd. Op deze Zonneweide worden verschillende typen zonnepanelen en verschillende vrije veldopstellingen continu gemonitord en vergeleken op performance en rendabiliteit. Jaarlijks wordt een rapport met onderzoeksresultaten uitgebracht. In de vorige rapportage (Zonneweide Energierijk; Resultaten 2011-2012; PPO publicatie nr. 526) is naast een vergelijking van de performance van de verschillende systemen, nadrukkelijk ingegaan op de rentabiliteit van de geteste PV systemen. Het huidige rapport beschrijft de technische resultaten van de verschillende systemen gedurende de afgelopen jaren.
    Groei elektriciteitsconsumptie glastuinbouw : Hoe verder?
    Velden, N.J.A. van der; Smit, P.X. - \ 2013
    Den Haag : LEI, onderdeel van Wageningen UR (Rapport / LEI : Werkveld, Sectoren en ondernemerschap ) - ISBN 9789086156429 - 60
    glastuinbouw - teelt onder bescherming - energiegebruik - energiebehoeften - elektriciteit - opwekking van elektriciteit - warmtekrachtkoppeling - groei - onderzoek - kooldioxide - greenhouse horticulture - protected cultivation - energy consumption - energy requirements - electricity - electricity generation - cogeneration - growth - research - carbon dioxide
    De consumptie van elektriciteit door de glastuinbouw is de achterliggende jaren substantieel toegenomen Waarvoor de elektriciteit wordt gebruikt is onvoldoende bekend. Het LEI heeft in opdracht van PT en EZ het gebruik en de groei van de elektriciteitsconsumptie naar apparatuur in kaart gebracht. Bovendien is een kwalitatieve verkenning uitgevoerd naar het belang van de opties voor de verduurzaming van de elektriciteitsconsumptie. De basisinformatie is afkomstig van diverse databonnen maar vooral van ervaringsdeskundigen.
    Innovatie- en Democentrum Kas als Energiebron: Samenvattende eindrapportage periode 2007-2012
    Bakker, J.C. ; Dijkshoorn, A. - \ 2013
    Bleiswijk : Wageningen UR Glastuinbouw (Rapporten GTB 1224)
    glastuinbouw - teelt onder bescherming - energiegebruik - energiebesparing - doelstellingen - kennisoverdracht - kastechniek - effecten - milieubeheer - opwekking van elektriciteit - greenhouse horticulture - protected cultivation - energy consumption - energy saving - objectives - knowledge transfer - greenhouse technology - effects - environmental management - electricity generation
    Het project Innovatie en Demonstratie Centrum Kas Als Energiebron is in 2005 gestart met de ontwerpwedstrijd “Kas als Energiebron” en is tot en met 2012 een van de belangrijke middelen geweest binnen het Programma Kas Als Energie Bron. Het doel van het Innovatie- en Democentrum was om katalysator te zijn voor technologische innovaties en de primaire focus lag daarmee op demonstreren van techniek en ontwikkelingen gericht op het terugdringen van het absolute fossiele energiegebruik. Gedurende de looptijd van het IDC is het accent iets verschoven van uitsluitend op technieken gekoppeld aan de gedachte van “netto Energie producerende kas”, naar de totale doelstelling van het energiebesparings- en efficiëntieonderzoek binnen het programma Kas als Energiebron. Naast het verzamelen van kennis, was kennisverspreiding een uitdrukkelijke taak. Door efficiënte inzet van middelen en verschuivingen van budget binnen de oorspronkelijke begroting kon de oorspronkelijke looptijd met één jaar worden verlengd tot en met 2012. Gedurende deze tijd heeft het IDC gefungeerd als een aandachtstrekker en stimulator rond energiezuinige en –leverende kassen én het “Nieuwe telen”.
    Daglichtkas maakt dure stroom
    Zwart, H.F. de - \ 2013
    Kennis Online 10 (2013)jan/febr. - p. 8 - 8.
    glastuinbouw - teelt onder bescherming - potplanten - opwekking van elektriciteit - daglicht - elektrische stroom - transformators - greenhouse horticulture - protected cultivation - pot plants - electricity generation - daylight - electric current - transformers
    De planten groeien prima in de nieuwe Daglichtkas voor schaduwminnende potplanten. Maar de elektriciteitsproductie is bij de huidige stroomprijzen niet rendabel, zegt onderzoeker Feije de Zwart van Wageningen UR Glastuinbouw.
    Zonneweide Energierijk : resultaten 2011-2012
    Spruijt, J. - \ 2012
    Lelystad : ACRRES - Wageningen UR (PPO-526 ) - 25
    zonne-energie - opwekking van elektriciteit - zonnecollectoren - energie - rentabiliteit - prestatieniveau - fotovoltaïsche cellen - solar energy - electricity generation - solar collectors - energy - profitability - performance - photovoltaic cells
    De Zonneweide is een onderdeel van het project EnergieRijk. Op de Zonneweide worden verschillende typen zonnepanelen en verschillende opstellingen getest op performance en rendabiliteit. In dit rapport zijn de resultaten van oktober 2011 tot en met september 2012 weergegeven.
    Design criteria for the plant-microbial fuel cell : electricity generation with living plants : from lab tot application
    Helder, M. - \ 2012
    Wageningen University. Promotor(en): Cees Buisman, co-promotor(en): Bert Hamelers; David Strik. - [S.l.] : s.n. - ISBN 9789461733511
    microbiële brandstofcellen - opwekking van elektriciteit - arundo donax - spartina anglica - arundinella - bio-elektrische potentiaal - selectiecriteria - bio-energie - biobased economy - microbial fuel cells - electricity generation - arundo donax - spartina anglica - arundinella - bioelectric potential - selection criteria - bioenergy - biobased economy
    Om de processen die ten grondslag liggen aan de P-MBC (Plant-Microbiële Brandstofcel) en de factoren die zijn vermogen bepalen beter te begrijpen was het doel van dit proefschrift om design criteria voor de PMBC te bepalen. De eerste focus van de design criteria was om het vermogen van de P-MBC te verhogen. Hoe hoger het vermogen, hoe groter de bijdrage aan duurzame elektriciteitsproductie. De ontwikkeling van een nieuwe elektriciteitstechnologie tot een volwaardig commercieel product behelst echter meer dan alleen het vermogen. Daarom hebben we nog een aantal andere factoren onderzocht die de toepassingsmogelijkheden van de P-MBC bepalen.
    Worsteling in de Elkas (interview met Gert-Jan Swinkels)
    Swinkels, G.L.A.M. - \ 2012
    Vakblad voor de Bloemisterij 67 (2012)28. - ISSN 0042-2223 - p. 24 - 25.
    glastuinbouw - beglazing - warmtestraling - zonne-energie - opwekking van elektriciteit - proefprojecten - landbouwkundig onderzoek - greenhouse horticulture - glazing - thermal radiation - solar energy - electricity generation - pilot projects - agricultural research
    Onderzoeker Gert-Jan Swinkels worstelt met de lamellen in de Elkas, de nieuwe elektriciteitsproducerende proefkas van WUR Glastuinbouw in Wageningen.
    Electricity generation by living plants in a plant microbial fuel cell
    Timmers, R.A. - \ 2012
    Wageningen University. Promotor(en): Cees Buisman, co-promotor(en): Bert Hamelers; David Strik. - S.l. : s.n. - ISBN 9789461912824 - 196
    opwekking van elektriciteit - microbiële brandstofcellen - electricity generation - microbial fuel cells

    Society is facing local and global challenges to secure needs of people. One of those needs is the increasing demand of energy. Currently most energy is generated by conversion of fossil fuels. The major drawback of using fossil fuels is pollution of the environment by emission of carbon dioxide, nitrogen oxides, sulfur dioxide, volatile organic compounds, heavy metals, and fine particles. Furthermore fossil fuels are not renewable in a time scale in the order of decades. The microbial solar cell (MSC) is a new collective name of biotechnological systems that integrate photosynthetic and electrochemically active organisms to generate electricity in a clean and renewable manner. Among the MSCs, the plant microbial fuel cell (PMFC) that employs higher plants, is the most promising MSCs. In PMFCs, plant roots provide substrate for electrochemically active bacteria in the anode by the loss of organic compounds. In natural environments plant roots loose organic compound by diffusion through the cell membrane, or release organic compounds in order to acquire necessary nutrient. In both cases these organic compounds are an energy source for micro-organisms. In the PMFC these lost or released organic compounds are partly utilized by electrochemically active bacteria. During the oxidation of these organic compounds s electrochemically active bacteria transfer electrons to the anode electrode and produce protons and carbon dioxide. The electrons flow via a power harvester to the cathode compartment where the electrons are consumed by typically oxygen reduction. The aim of this thesis was to characterize the PMFC biologically and electrochemically and to improve the design towards higher applicable power outputs. The approach of this thesis was to understand processes in the PMFC which limit electrical power generation and use these findings to improve electrical power generation and the applicability of the PMFC design.

    Plant-e: living plants generate electricity
    Strik, D.P.B.T.B. ; Helder, M. - \ 2011
    bio-energie - opwekking van elektriciteit - wortelexudaten - innovaties - groene daken - biobased economy - bioenergy - electricity generation - root exudates - innovations - green roofs - biobased economy
    Plant-e is a company that develops products that can generate electricity from living plants. Based on natural processes electrons are harvested from the soil and electricity is produced while plants keep growing! Too good to be true? See for more information
    Benutting van zonne-energie in de tuinbouw: een strategische verkenning
    Zwart, H.F. de; Hemming, S. ; Ruijs, M.N.A. ; Gieling, T.H. - \ 2011
    Wageningen : Wageningen UR Glastuinbouw (Rapporten GTB 1134)
    tuinbouw - energiegebruik - zonne-energie - duurzaamheid (sustainability) - opwekking van elektriciteit - energieomzetting - kastechniek - efficiëntie - glastuinbouw - horticulture - energy consumption - solar energy - sustainability - electricity generation - energy conversion - greenhouse technology - efficiency - greenhouse horticulture
    Referaat In het jaarplan Kas als Energiebron wordt aangegeven in 2011 een strategische verkenning uit te voeren naar de mogelijkheden van benutting van warmte uit zonne-energie voor de glastuinbouw in 2020. Naast de ambitie om in 2020 in nieuw te bouwen kassen klimaatneutraal te telen bestaat de ambitie om een aandeel van 20% duurzame energie in te zetten in 2020. Naast aardwarmte en bio-energie is een flinke bijdrage vanuit zonne-energie nodig om deze ambitie te verwezenlijken. Er is dus behoefte aan een verzameling van nieuwe ideeën en een overzicht van de potenties en nieuwe (deel) voorzieningen die nodig zijn om deze bijdrage uit zonne-energie te kunnen verwezenlijken. De technische en economische mogelijkheden voor het benutten van zonne-energie in de glastuinbouw worden in dit rapport beschreven. Tevens worden de poteniele energetische bijdrages voor de glastuinbouwsector voor het benutten van zonnewarmte of conversie naar elektriciteit geschetst. Een aantal concrete casussen op bedrijfsniveau worden berekend. Deze studie is gefinancierd door het ministerie van Economische Zaken, Landbouw en Innovaties en het Productschap Tuinbouw. Abstract In the yearly program of “Kas als Energiebron” 2011 it is stated to carry out a strategic research on the possibilities of using solar energy for greenhouse production in 2020. The ambitions are to build all new greenhouses in 2020 in a climate neutral way and to use 20% of sustainable energy. Next to geothermal heat and biofuels a large contribution from solar energy is necessary in order to fulfil these ambitions. Therefore new ideas to use solar energy in greenhouse production have to be collected. The energetic and economic potentials of the use of new technologies in greenhouses have to be estimated. The technical and economical possibilities for using solar energy in greenhouse horticulture are described in this report. Next to that the potential energetic contributions of solar heat or solar electricity in Dutch greenhouse horticulture are described. A number of specific cases of using solar energy on company level are calculated. This study is financed by the Ministry of Economic Affairs, Agriculture and Innovations and the Dutch Productboard of Horticulture.
    Literatuurstudie van Miscanthus gericht op warmte en elektriciteit op boerderijschaal = Literature review of Miscanthus focused on heat and electricity on farm scale
    Kasper, G.J. - \ 2011
    Lelystad : Wageningen UR Livestock Research (Rapport / Wageningen UR Livestock Research 549) - 13
    miscanthus - brandstofgewassen - energieproductie in de landbouw - intensieve veehouderij - warmte - opwekking van elektriciteit - gasproductie - gewasopbrengst - biobased economy - bio-energie - miscanthus - fuel crops - agricultural energy production - intensive livestock farming - heat - electricity generation - gas production - crop yield - biobased economy - bioenergy
    Literature review of Miscanthus focused on generating heat and electricity on farm scale.
    Duurzame elektriciteitsopwekking
    Putten, K. van der; Meij, M. van der - \ 2011
    BloembollenVisie 2011 (2011)234. - ISSN 1571-5558 - p. 22 - 22.
    tuinbouwbedrijven - bloembollen - opwekking van elektriciteit - energieomzetting - warmtekrachtkoppeling - duurzaamheid (sustainability) - rendement - market gardens - ornamental bulbs - electricity generation - energy conversion - cogeneration - sustainability - returns
    De mogelijkheden om elektriciteit op te wekken zijn groot. Ook voor de bollensector zijn hier zeker perspectieven die interessant zijn voor de toekomst. Naast de duurzaamheid, kan het ook economisch aantrekkelijk zijn om op deze vorm van energievoorziening over te gaan.
    Energiemonitor van de Nederlandse glastuinbouw 2010
    Velden, N.J.A. van der; Smit, P.X. - \ 2011
    Den Haag : LEI Wageningen UR (Rapport / LEI : Werkveld, Sectoren en bedrijven ) - ISBN 9789086155446 - 68
    kassen - glastuinbouw - teelt onder bescherming - energiegebruik - duurzaamheid (sustainability) - efficiëntie - emissie - opwekking van elektriciteit - greenhouses - greenhouse horticulture - protected cultivation - energy consumption - sustainability - efficiency - emission - electricity generation
    De Energiemonitor Glastuinbouw brengt de energie-efficiëntie, de CO2-emissie, het aandeel duurzame energie en de transitiepaden van het Programma Kas als Energiebron in kaart tot en met 2010.
    The Plant Microbial Fuel Cell: producing green energy with living plants
    Kuijken, R.C.P. ; Snel, J.F.H. ; Strik, D.P.B.T.B. ; Bouwmeester, H.J. ; Marcelis, L.F.M. - \ 2010
    bio-energie - opwekking van elektriciteit - energiebronnen - microbiële brandstofcellen - onderzoeksprojecten - biobased economy - wortelexudaten - bioenergy - electricity generation - energy sources - microbial fuel cells - research projects - biobased economy - root exudates
    Poster met onderzoeksinformatie.
    Microgasturbines in energie-extensieve glastuinbouwbedrijven
    Swinkels, G.L.A.M. ; Braak, N.J. van de; Kempkes, F.L.K. - \ 2003
    Wageningen : Instituut voor Milieu- en Agritechniek (IMAG nota / Instituut voor Milieu- en Agritechniek P 2003-09) - 37
    kassen - energiegebruik - warmtekrachtkoppeling - opwekking van elektriciteit - kastechniek - greenhouses - energy consumption - cogeneration - electricity generation - greenhouse technology
    Nederlandse tuinders die energie-extensieve gewassen telen, worden evenals hun veel gas verbruikende collega's geconfronteerd met de eis hun energieverbruik terug te dringen. Juist door het lage gasverbruik is het voor deze tuinders ectra moeilijk om hieraan te voldoen. De inzet van een kleine warmtekrachtinstallatie aangedreven door een micoturbine maakt het wellicht mogelijk de besparingen te realiseren door zelfopwekking van de op deze bedrijven benodigde elektriciteit.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.