Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 5 / 5

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Benthic macroinvertebrates
Check title to add to marked list
Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms
Peng, Feng Jiao ; Diepens, Noël J. ; Pan, Chang Gui ; Ying, Guang Guo ; Salvito, Daniel ; Selck, Henriette ; Brink, Paul J. Van den - \ 2019
Environmental Pollution 248 (2019). - ISSN 0269-7491 - p. 676 - 683.
Benthic macroinvertebrates - Microcosm - Sediment bacterial community - Toxicity - Triclosan

The response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed). Regarding dominant phyla, TCS significantly reduced the relative abundance of Bacteroidetes and Firmicutes at these concentrations, whereas the relative abundance of Chloroflexi and Cyanobacteria increased. In the presence of benthic macroinvertebrates, the sediment bacterial community was affected by 8 μg TCS/g dw sed as well. However, the presence of benthic macroinvertebrates did not cause measurable changes to bacterial community in unspiked (i.e., control) sediment. These results indicate that TCS alone would not alter the sediment bacterial community at environmentally relevant concentrations (up till 8 μg/g dw sed), but may have an effect in combination with the presence of benthic macroinvertebrates. Therefore, we recommend to include benthic macroinvertebrates when assessing the response of sediment bacterial communities during exposure to environmental stress such as organic contaminants.

Fate and effects of sediment-associated polycyclic musk HHCB in subtropical freshwater microcosms
Peng, Feng Jiao ; Kiggen, Fionne ; Pan, Chang Gui ; Bracewell, Sally A. ; Ying, Guang Guo ; Salvito, Daniel ; Selck, Henriette ; Brink, Paul J. Van den - \ 2019
Ecotoxicology and Environmental Safety 169 (2019). - ISSN 0147-6513 - p. 902 - 910.
Bacterial community - Benthic macroinvertebrates - Bioaccumulation - Dissipation - HHCB - Toxicity

Galaxolide (HHCB) is used as a fragrance ingredient in household and personal care products, and has been ubiquitously detected in the environment. Here we investigated the fate of HHCB in subtropical freshwater microcosms, and evaluated effects of sediment-associated HHCB on a biological community consisting of algae, Daphnia, benthic macroinvertebrates and bacteria. The concentrations of sediment-associated HHCB did not change significantly during a 28 days exposure period, but HHCB accumulated in worms with biota-sediment accumulation-factor (BSAF) values in the range of 0.29–0.66 for Branchiura sowerbyi and 0.94–2.11 for Limnodrilus hoffmeisteri. There was no significant effects of HHCB (30 μg/g dry weight (dw) sediment) on chlorophyll-a content, sediment bacterial community composition, and survival and growth of benthic macroinvertebrates. However, the presence of benthic macroinvertebrates altered the sediment bacterial community structure relative to microcosms without introduced organisms. The findings of this study suggest that a single high-dose of HHCB, over 28 days, at environmentally relevant concentrations would not impose direct toxicological risks to aquatic organisms such as benthic macroinvertebrates.

Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms
Peng, Feng-Jiao ; Diepens, Noël J. ; Pan, Chang-Gui ; Bracewell, Sally A. ; Ying, Guang-Guo ; Salvito, Daniel ; Selck, Henriette ; Brink, Paul J. Van den - \ 2018
Aquatic Toxicology 202 (2018). - ISSN 0166-445X - p. 117 - 125.
Benthic macroinvertebrates - Bioaccumulation - Dissipation - Partitioning - Toxicity

Triclosan (TCS) is an antibacterial agent that is commonly used in personal care products. Because of its sediment-binding properties, TCS exposure presents a potential threat to sediment-dwelling aquatic organisms. Currently our knowledge of the fate and effects of sediment-associated TCS in aquatic systems is limited. To understand the impact of sediment-associated TCS, we used microcosms to assess effects of TCS exposure on a diverse range of organisms selected to mimic a subtropical community, with an exposure period of 28 days. We included the oligochaete freshwater worm Limnodrilus hoffmeisteri to evaluate the interaction between sediment-associated TCS and sediment-dwelling organisms, including potential loss of TCS from the sediment due to biological activity and bioaccumulation. Benthic macroinvertebrate presence significantly increased the TCS levels from 0.013 ± 0.007 μg/L to 0.613 ± 0.030 μg/L in the overlying water through biological activity, posing a potential additional risk to pelagic species, but it did not result in a significant reduction of the sediment concentration. Furthermore, worms accumulated TCS with estimated Biota-Sediment-Accumulation-Factors (BSAFs) ranging between 0.38–3.55. Other than for algae, TCS at environmental concentrations did not affect the survival of the introduced organisms, including the L. hoffmeisteri. Our results demonstrate that, although TCS at currently detected maximum concentration may not have observable toxic effects on the benthic macroinvertebrates in the short term, it can lead to bioaccumulation in worms.

Avoidance tests as a tool to detect sublethal effects of oil-impacted sediments
Szczybelski, Ariadna S. ; Kampen, Tineke ; Vromans, Joris ; Peeters, Edwin T.H.M. ; Heuvel-Greve, Martine J. van den; Brink, Nico W. van den; Koelmans, Albert A. - \ 2018
Environmental Toxicology and Chemistry 37 (2018)6. - ISSN 0730-7268 - p. 1757 - 1766.
Amphipod - Avoidance - Benthic macroinvertebrates - Distillate marine grade A oil - Oil spills - Risk assessment
Currently, risk assessment for oil contamination does not consider behavioral responses of benthos to oil toxicity. Avoidance of oil-contaminated sediment by benthic amphipods, however, may be a highly sensitive endpoint for sublethal effects of commonly used distillate fuels. In the present study, the avoidance behavior of temperate freshwater (Gammarus pulex) and marine (Gammarus locusta) amphipods was tested by allowing them to choose between a reference sediment and a distillate marine grade A (DMA) oil-spiked sediment. Avoidance of DMA-spiked sediment at 1000mg/kg dry weight was significant within the total exposure time (96h) in G. pulex and within the first 72h in G. locusta in 1 of 2 tests. Absence of DMA avoidance at lower concentrations (≤250mg/kg dry wt) indicates that test species can only detect DMA above these concentrations. However, sensitivity to oil may vary according to the phenology and physiological conditions of the populations involved, such as the species temperature tolerance and reproductive stage. The results suggest that avoidance tests may be used as an alternative to traditional chronic toxicity tests provided that a causal link between avoidance and long-term effects can be established.
Toxicity of sediment-bound lufenuron to benthic arthropods in laboratory bioassays
Brock, T.C.M. ; Belgers, J.D.M. ; Boerwinkel, M.C. ; Jollie, L. ; Kraak, M.H.S. ; Papo, M.J. ; Vonk, J.A. ; Roessink, I. - \ 2018
Aquatic Toxicology 198 (2018). - ISSN 0166-445X - p. 118 - 128.
Benthic macroinvertebrates - Benzoylurea insecticide - Regulatory acceptable concentration - Sediment ecotoxicology - Sediment-spiked laboratory toxicity tests - Species sensitivity distributions
This paper deals with species sensitivity distributions (SSDs) for the lipophilic insecticide lufenuron and benthic arthropods based on sediment-spiked laboratory toxicity tests. This compound that inhibits chitin synthesis and moulting of arthropods persists in sediment. Using field-collected sediment, toxicity tests were conducted with three macro-crustaceans and six insects. The Hazardous Concentration to 5% of the tested species, the HC5 (and 95% confidence limit), derived from an SSD constructed with 10d-LC50′s was 2.2 (1.2–5.7) μg/g organic carbon (OC) in dry sediment. In addition, HC5 values derived from SSDs constructed with 28d-LC10 and 28-d LC50 values were 0.13 (0.02–1.50) μg/g OC and 2.0 (1.3–5.5) μg/g OC, respectively. In 28d toxicity tests with Chironomus riparius and Hyalella azteca, a higher sensitivity was observed when using lufenuron-spiked field-collected sediment than in lufenuron-spiked artificial sediment. Overall, the non-biting midge C. riparius appeared to be a representative and sensitive standard test species to assess effects of lufenuron exposure in sediment. The Tier-1 (based on standard test species), Tier-2 (based on standard and additional test species) and Tier-3 (model ecosystem approach) regulatory acceptable concentrations (RACs) for sediment-spiked lufenuron did not differ substantially. The Tier-2 RAC was the lowest. Since to our knowledge this study is the first in the open literature that evaluates the tiered approach in the sediment effect assessment procedure for pesticides, we advocate that similar evaluations should be conducted for pesticides that differ in toxic mode-of-action.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.