Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Concentration
Check title to add to marked list
Investigating the effect of temperature on the formation and stabilization of ovalbumin foams
Delahaije, Roy J.B.M. ; Lech, Frederik J. ; Wierenga, Peter A. - \ 2019
Food Hydrocolloids 91 (2019). - ISSN 0268-005X - p. 263 - 274.
Concentration - Interfacial properties - Protein - Structural characterization - Viscosity

The effect of temperature (below denaturation temperature) on protein foam formation and stabilization is potentially large, but has received little attention. This study aims to identify the effect of temperature (15–60 °C) on ovalbumin-stabilized foams at different concentrations (0.05–50 g L−1), and place this in a theoretical perspective. With increasing temperature the initial adsorption rate (dΠ/dt) increased logarithmically from 0.006 mN m−1 s−1 at 5 °C to 0.084 mN m−1 s−1 at 60 °C. A concentration increase resulted in a linear increase of dΠ/dt. This concentration effect was also observed in the foam ability, although the foam ability increased logarithmically rather than linearly with concentration, as expected based on theory and dΠ/dt. The foam ability was hardly affected by temperature (in contrast to theory and dΠ/dt). This was attributed to the strong decrease of foam stability with increasing temperature, which was expected based on theory. At elevated temperatures, the poor foam stability interferes with the foam ability (i.e. foam stability ≈ timescale of foam formation), a situation also happening at low concentrations. When formation was faster than destabilization, the foam ability relates to the effective adsorption rate. The effective adsorption rate includes the decrease in adsorption probability with increasing surface coverage. The observed balance between the effect of adsorption rate and foam stability on foam ability is not quantitatively predictable based on current theoretical models.

Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.