Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 4 / 4

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Cows milk allergy
Check title to add to marked list
The potential for pre-, pro- and synbiotics in the management of infants at risk of cow's milk allergy or with cow's milk allergy: An exploration of the rationale, available evidence and remaining questions
Fox, Adam ; Bird, J.A. ; Fiocchi, Alessandro ; Knol, Jan ; Meyer, Rosan ; Salminen, Seppo ; Sitang, Gong ; Szajewska, Hania ; Papadopoulos, Nikolaos - \ 2019
World Allergy Organization Journal 12 (2019)5. - ISSN 1939-4551
Allergy - Anaphylaxis - Bifidobacteria - Cow's milk allergy - Dysbiosis - IgE - Lactobacilli - Microbiota - Prebiotic - Probiotic - Synbiotic - World Allergy Organization

Cow's milk allergy is one of the most commonly reported childhood food allergies, with increasing incidence, persistence and severity in many countries across the world. The World Allergy Organization Special Committee on Food Allergy has identified cow's milk allergy as an area in need of a rationale-based approach in order to make progress against what it considered an onerous problem, with worldwide public health impact. There is growing interest in the potential role of the gut microbiota in the early programming and development of immune responses and allergy. This discussion paper considers the rationale and available evidence for modulation of the gut microbiota and for the use of synbiotics in the management of infants at risk of, or living with cow's milk allergy and summarizes remaining research questions that need to be answered for the development of evidence-based recommendations.

A specific synbiotic-containing amino acid-based formula restores gut microbiota in non-IgE mediated cow's milk allergic infants: A randomized controlled trial
Wopereis, Harm ; Ampting, Marleen T.J. Van; Cetinyurek-Yavuz, Aysun ; Slump, Rob ; Candy, David C.A. ; Butt, Assad M. ; Peroni, Diego G. ; Vandenplas, Yvan ; Fox, Adam T. ; Shah, Neil ; Roeselers, Guus ; Harthoorn, Lucien F. ; Michaelis, Louise J. ; Knol, Jan ; West, Christina E. - \ 2019
Clinical and Translational Allergy 9 (2019)1. - ISSN 2045-7022
Cow's milk allergy - Gut microbiota - Pediatrics - Prebiotics - Probiotics

Background: Altered gut microbiota is implicated in cow's milk allergy (CMA) and differs markedly from healthy, breastfed infants. Infants who suffer from severe CMA often rely on cow's milk protein avoidance and, when breastfeeding is not possible, on specialised infant formulas such as amino-acid based formulas (AAF). Herein, we report the effects of an AAF including specific synbiotics on oral and gastrointestinal microbiota of infants with non-IgE mediated CMA with reference to healthy, breastfed infants. Methods: In this prospective, randomized, double-blind controlled study, infants with suspected non-IgE mediated CMA received test or control formula. Test formula was AAF with synbiotics (prebiotic fructo-oligosaccharides and probiotic Bifidobacterium breve M-16V). Control formula was AAF without synbiotics. Healthy, breastfed infants were used as a separate reference group (HBR). Bacterial compositions of faecal and salivary samples were analysed by 16S rRNA-gene sequencing. Faecal analysis was complemented with the analysis of pH, short-chain fatty acids (SCFAs) and lactic acids. Results: The trial included 35 test subjects, 36 controls, and 51 HBR. The 16S rRNA-gene sequencing revealed moderate effects of test formula on oral microbiota. In contrast, the gut microbiota was substantially affected across time comparing test with control. In both groups bacterial diversity increased over time but was characterised by a more gradual increment in test compared to control. Compositionally this reflected an enhancement of Bifidobacterium spp. and Veillonella sp. in the test group. In contrast, the control-fed infants showed increased abundance of adult-like species, mainly within the Lachnospiraceae family, as well as within the Ruminococcus and Alistipes genus. The effects on Bifidobacterium spp. and Lachnospiraceae spp. were previously confirmed through enumeration by fluorescent in situ hybridization and were shown for test to approximate the proportions observed in the HBR. Additionally, microbial activity was affected as evidenced by an increase of l-lactate, a decrease of valerate, and reduced concentrations of branched-chain SCFAs in test versus control. Conclusions: The AAF including specific synbiotics effectively modulates the gut microbiota and its metabolic activity in non-IgE mediated CMA infants bringing it close to a healthy breastfed profile. Trial registration Registered on 1 May 2013 with Netherlands Trial Register Number NTR3979.

A specific synbiotic-containing amino acid-based formula in dietary management of cow's milk allergy : A randomized controlled trial
Fox, Adam T. ; Wopereis, Harm ; Ampting, Marleen T.J. van; Oude Nijhuis, Manon M. ; Butt, Assad M. ; Peroni, Diego G. ; Vandenplas, Yvan ; Candy, David C.A. ; Shah, Neil ; West, Christina E. ; Garssen, Johan ; Harthoorn, Lucien F. ; Knol, Jan ; Michaelis, Louise J. - \ 2019
Clinical and Translational Allergy 9 (2019)1. - ISSN 2045-7022
Bifidobacterium breve M-16V - Cow's milk allergy - Gut microbiota - Prebiotic - Probiotic - Symptoms

Background: Here we report follow-up data from a double-blind, randomized, controlled multicenter trial, which investigated fecal microbiota changes with a new amino acid-based formula (AAF) including synbiotics in infants with non-immunoglobulin E (IgE)-mediated cow's milk allergy (CMA). Methods: Subjects were randomized to receive test product (AAF including fructo-oligosaccharides and Bifidobacterium breve M-16V) or control product (AAF) for 8 weeks, after which infants could continue study product until 26 weeks. Fecal percentages of bifidobacteria and Eubacterium rectale/Clostridium coccoides group (ER/CC) were assessed at 0, 8, 12, and 26 weeks. Additional endpoints included stool markers of gut immune status, clinical symptoms, and safety assessments including adverse events and medication use. Results: The trial included 35 test subjects, 36 controls, and 51 in the healthy reference group. Study product was continued by 86% and 92% of test and control subjects between week 8-12, and by 71% and 80%, respectively until week 26. At week 26 median percentages of bifidobacteria were significantly higher in test than control [47.0% vs. 11.8% (p < 0.001)], whereas percentages of ER/CC were significantly lower [(13.7% vs. 23.6% (p = 0.003)]. Safety parameters were similar between groups. Interestingly use of dermatological medication and reported ear infections were lower in test versus control, p = 0.019 and 0.011, respectively. Baseline clinical symptoms and stool markers were mild (but persistent) and low, respectively. Symptoms reduced towards lowest score in both groups. Conclusion: Beneficial effects of this AAF including specific synbiotics on microbiota composition were observed over 26 weeks, and shown suitable for dietary management of infants with non-IgE-mediated CMA.

Synbiotics-supplemented amino acid-based formula supports adequate growth in cow's milk allergic infants
Burks, A.W. ; Harthoorn, L.F. ; Ampting, M.T.J. Van; Oude Nijhuis, M.M. ; Langford, J.E. ; Wopereis, Harm ; Goldberg, S.B. ; Ong, P.Y. ; Essink, B.J. ; Scott, R.B. ; Harvey, B.M. - \ 2015
Pediatric Allergy and Immunology 26 (2015)4. - ISSN 0905-6157 - p. 316 - 322.
Amino acid-based formula - Cow's milk allergy - Growth - Infant - Prebiotics - Probiotics - Randomized double-blind controlled trial - Safety

Background: Children with cow's milk allergy (CMA) are at risk for inadequate nutritional intake and growth. Dietary management of CMA, therefore, requires diets that are not only hypoallergenic but also support adequate growth in this population. This study assessed growth of CMA infants when using a new amino acid-based formula (AAF) with prebiotics and probiotics (synbiotics) and evaluated its safety in the intended population. Methods: In a prospective, randomized, double-blind controlled study, full-term infants with diagnosed CMA received either an AAF (control; n = 56) or AAF with synbiotics (oligofructose, long-chain inulin, acidic oligosaccharides, Bifidobacterium breve M-16V) (test; n = 54) for 16 wk. Primary outcome was growth, measured as weight, length and head circumference. Secondary outcomes included allergic symptoms and stool characteristics. Results: Average age (±SD) of infants at inclusion was 4.5 ± 2.4 months. Both formulas equally supported growth according to WHO 2006 growth charts and resulted in similar increases of weight, length and head circumference. At week 16, differences (90% CI) in Z-scores (test-control) were as follows: weight 0.147 (-0.10; 0.39, p = 0.32), length -0.299 (-0.69; 0.09, p = 0.21) and head circumference 0.152 (-0.15; 0.45, p = 0.40). Weight-for-age and length-for-age Z-scores were not significantly different between the test and control groups. Both formulas were well tolerated and reduced allergic symptoms; the number of adverse events was not different between the groups. Conclusions: This is the first study that shows that an AAF with a specific synbiotic blend, suitable for CMA infants, supports normal growth and growth similar to the AAF without synbiotics. This clinical trial is registered as NCT00664768.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.