Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Denaturation
Check title to add to marked list
Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)
Ruiz, Geraldine Avila ; Xiao, Wukai ; Boekel, Tiny van; Minor, Marcel ; Stieger, Markus - \ 2016
Food Chemistry 209 (2016). - ISSN 0308-8146 - p. 203 - 210.
Aggregation - Denaturation - Extraction - Gelation - Protein - Quinoa - Solubility

The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10% w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates.

Denaturation and in Vitro Gastric Digestion of Heat-Treated Quinoa Protein Isolates Obtained at Various Extraction pH
Ruiz, Geraldine Avila ; Opazo-Navarrete, Mauricio ; Meurs, Marlon ; Minor, Marcel ; Sala, Guido ; Boekel, Tiny van; Stieger, Markus ; Janssen, Anja E.M. - \ 2016
Food Biophysics 11 (2016)2. - ISSN 1557-1858 - p. 184 - 197.
Denaturation - Digestibility - Extraction pH - Heat processing - Protein - Quinoa

The aim of this study was to determine the influence of heat processing on denaturation and digestibility properties of protein isolates obtained from sweet quinoa (Chenopodium quinoa Willd) at various extraction pH values (8, 9, 10 and 11). Pretreatment of suspensions of protein isolates at 60, 90 and 120 °C for 30 min led to protein denaturation and aggregation, which was enhanced at higher treatment temperatures. The in vitro gastric digestibility measured during 6 h was lower for protein extracts pre-treated at 90 and 120 °C compared to 60 °C. The digestibility decreased with increasing extraction pH, which could be ascribed to protein aggregation. Protein digestibility of the quinoa protein isolates was higher compared to wholemeal quinoa flour. We conclude that an interactive effect of processing temperature and extraction pH on in vitro gastric digestibility of quinoa protein isolates obtained at various extraction pH is observed. This gives a first indication of how the nutritional value of quinoa protein could be influenced by heat processing, protein extraction conditions and other grain components.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.